
Dalvik and ART

Jonathan Levin

http://NewAndroidBook.com/

http://www.technologeeks.com

Did you attend part I?

• If you didn’t, at least get the presentation
– http://NewAndroidBook.com/files/Andevcon-DEX.pdf

– http://NewAndroidBook.com/files/Andevcon-ART.pdf (is part II)

• Maybe you should have.. ART builds over DEX

– We’ll refer back to DEX nomenclature as we go along

– Feel free to pause for questions at any time.

Preface

What we won’t be discussing

• The nitty-gritty, molecular-level internals of ART

– Code Generation down to the assembly level

– LLVM integration

– Internal memory structures

• Because...

A) This level has only recently meta-stabilized

(ART in 5.0 is not compatible with 4.4.x’s, or the preview releases.

B) We don’t really have time to go that deep (71 Mins to go!)

C) There’s a chapter in the book for that*

q.v. www.newAndroidBook.com (tip: Follow RSS or @Technologeeks)

Preface

* - Well, at least there will be. Still working on updating that chapter with a massive rewrite, unfortunately..

What we will be discussing

• High level architecture and principles

• ART and OAT file structure

• ART code generation at a high level view

• ART reversing

• Debugging in ART (high-level)

Preface

Interlude (Necessary Plug*)

• Me: Jonathan Levin, CTO of http://Technologeeks.com

– Training and consulting on internals/debugging, networking

– Follow us on Twitter (@Technologeeks), Etc. Etc. Etc

• My Book: “Android Internals: A Confectioner’s Cookbook”

– http://www.NewAndroidBook.com/ for tools, articles, and more

– Unofficial sequel to Karim Yaghmour’s “Embedded Android”

• More on the how and why Android frameworks and services work

– (presently) only in-depth book on the subject

• Just in case anyone’s into iOS (w/41% probability?)

– http://www.newosxbook.com/

– 2nd Edition (covers iOS 8, OS X 10.10) due March ‘15

Preface

* - Keeping it quick for those people who sat through Part I ☺

Part II - ART

The Android RunTime

• ART was introduced in KitKat (4.4):

– Available only through developer options

– Declared to be a “preview” release, use-at-your-own-risk

– Very little documentation, if any

– Some performance reviews (e.g. AnandTech), but only for Preview Release

• In Lollipop, ART becomes the RunTime of choice

– Supersedes (all but buries) Dalvik

– Breaks compatibility with older DEX, as well as itself (in preview version)

– And still – very little documentation, if any

Introducing: ART

Dalvik Disadvantages

Introducing: ART

• ART was designed to address the shortcomings of Dalvik:

– Virtual machine maintenance is expensive

• Interpreter/JIT simply aren’t efficient as native code

• Doing JIT all over again on every execution is wasteful

• Maintenance threads require significantly more CPU cycles

• CPU cycles translate to slower performance – and shorter battery life

– Dalvik garbage collection frequently causes hangs/pauses

– Virtual machine architecture is 32-bit only

• Android is following iOS into the 64-bit space

... Become ART Advantages

Introducing: ART

• ART moves compilation from Just-In-Time to Ahead-Of-Time

– Virtual machine maintenance is expensive

• Interpreter/JIT simply aren’t efficient as native code

• Doing JIT all over again on every execution is wasteful

• Maintenance threads require significantly more CPU cycles

• CPU cycles translate to slower performance – and shorter battery life

– Dalvik garbage collection frequently causes hangs/pauses

– Virtual machine architecture is 32-bit only

• Android is following iOS into the 64-bit space

(Some issues still exist here)

ART compiles to native

Just ONCE, AOT

Less threads

Less overhead cycles

not as

GC Parellizable (foreground/background),

Non-blocking (i.e. less GC_FOR_ALLOC)

Main Idea of ART - AOT

Introducing: ART

• Actually, compilation can be to one of two types:

– QUICK: Native Code

– Portable: LLVM Code

• In practice, preference is to compile to Native Code

– Portable implies another layer of IR (LLVM’s BitCode)

The Android RunTime

• ART uses not one, but two file formats:

– .art:

• Only one file, boot.art, in /system/framework/[arch] (arm, arm64, x86_64)

– .oat:

• Master file, boot.oat, in /system/framework/[arch] (arm, arm64, x86_64)

• .odex files: NO LONGER Optimized DEX, but OAT!

– alongside APK for system apps/frameworks

– /data/dalvik-cache for 3rd-party apps

ART Files

ART files

• The ART file is a proprietary format

– Poorly documented (which is why I wrote the book)

– changed format internally repeatedly (which is why book was so delayed)

– Not really understood by oatdump, either.. (which is why I wrote dextra)

– And.. changed again in L (ART009 vs. 005).. (which is why I’m rewriting the tool)

• ART file maps in memory right before OAT, which links with it.

• Contains pre-initialized classes, objects, and support structures

ART Files

ART Files

Creating ART (and OAT)

• In KK (ART is optional) you can see ART and OAT file creation:

The ART file format

Magic

checksum

Image begin Image size

Bitmap offset Bitmap size

Oat begin

Oat Data Begin Oat data end

Oat end Patch Delta

Image Roots

ART Magic header (“art\n“ and version (“009 “)

Adler32 of header

Load Address of ART file (fixed) File Size

Offset of image bitmap Size of bitmap

Load address of OAT Data (Oat Begin + 0x1000)

Last address of OAT (begin + size)

Address of image roots

Load address of OAT file

Last address of OAT Data

Used in offset patching

Addr of objectArray

..

Count (8)

kResolutionMethod

kImtConflictMethod

kCalleeSaveMethod

Image_roots array (serialized)

kRefsOnlySaveMethod

kRefsAndArgsSaveMethod

kDexCaches

kClassroots

kDefaultImt

ART Files

Loading the ART file

ART and OAT

The ART file mapping in memory is fixed (as art the .OAT)
root@generic:/ # cat /proc/1088/maps | grep boot
70dbd000-718db000 rw-p 00000000 1f:01 7053 .../system@framework@boot.art
718db000-7338c000 r--p 00000000 1f:01 7054 .../system@framework@boot.oat
7338c000-74844000 r-xp 01ab1000 1f:01 7054 .../system@framework@boot.oat
74844000-74845000 rw-p 02f69000 1f:01 7054 .../system@framework@boot.oat
b5242000-b5243000 r--p 00000000 1f:01 7054 .../system@framework@boot.oat
b5244000-b5271000 r--p 00b1e000 1f:01 7053 .../system@framework@boot.art

morpheus@Forge (~) # dextra ~/Tests/system@framework@boot.art
ART version 0x393030 header detected (header size: ox34, File Size 0xb4b000)
Image Begin: 70dbd000
Image Bitmap: 2d000 @0xb1e000-0xb4b000 (relocated separately from image base)
Patch Delta: 0xdbd000
Checksum: 0x5eae278
OAT file: 0x718db000-0x74845000 (not part of this image)
OAT data: 0x718dc000-0x74843690 (not part of this image)

Defeats the whole purpose of ASLR*, may be (eventually) patched

* - the boot.oat is also pretty big – and executable (ROP gadgets, anyone?)

OAT and ELF

ART and OAT

• OAT files are actually embedded in ELF object files
morpheus@Forge (~)$ file boot.oat
boot.oat: ELF 32-bit LSB shared object, ARM, EABI5 version 1 (GNU/Linux),
dynamically linked, stripped

morpheus@Forge (~)$ readelf -e boot.oat
...
Section Headers:
[Nr] Name Type Addr Off Size ES Flg Lk Inf Al
[0] NULL 00000000 000000 000000 00 0 0 0
[1] .dynsym DYNSYM 70b1e0d4 0000d4 000040 10 A 2 0 4
[2] .dynstr STRTAB 70b1e114 000114 000026 01 A 0 0 1
[3] .hash HASH 70b1e13c 00013c 000020 04 A 1 0 4
[4] .rodata PROGBITS 70b1f000 001000 1ab0000 00 A 0 0 4096
[5] .text PROGBITS 725cf000 1ab1000 14b7690 00 AX 0 0 4096
[6] .dynamic DYNAMIC 73a87000 2f69000 000038 08 A 1 0 4096
[7] .oat_patches LOUSER+0 00000000 2f69038 1148b8 04 0 0 4
[8] .shstrtab STRTAB 00000000 3085388 000045 01 0 0 1

Key/Value Store (Len bytes)

The OAT file format

ART and OAT

Magic

Executable offset

checksum Instruction Set

Dex file count

I2i Bridge

I2c Bridge Jni dlsym lookup

Generic IMT Portable Tramp

P2i Bridge

OAT Magic header (“oat\n“ and version (“039 “)

Offset of Executable (Load Address)

Adler32 of header Underlying architecture (ARM, ARM64, x86, etc.)

Count of Embedded DEX files (told ya DEX is alive)

Interpreter to Compiled Bridge Offset

Generic IMT Conflict Resolution Offset

Portable to Interpreter Bridge Offset

Interpreter-to-Interpreter Bridge Offset

Offset of JNI dlsym() lookup func for dynamic linking

Portable Resolution Trampoline Offset

Generic JNI Tramp Generic JNI Trampoline Offset

Generic IMT Portable Tramp

Quick IMT Conf. Quick Res Tramp

Q2I Bridge Patch OffsetQuick to Interpreter Bridge Offset

Key/Value Len

Location (filename)

The OAT DexFile Header

ART and OAT (and DEX..)

Location Len

• Following the OAT header are.. *surprise* - 1..n DEX files!

– Actual value given by DexFileCount field in header

Location Cksum File offset

Classes offset

signature

Magic

checksum

File size Header size

Endian tag Link size

...etc.. Etc..

(q.v. Part 1 of this talk)

Points to array of oat_class_headers

Followed by (possibly) method bitmap

Followed by array of oat_method_headers

Finding DEX in OAT

ART and OAT (And DEX)

• ODEX files will usually have only one (=original) DEX embdded

• BOOT.OAT is something else entirely:

– Some 14 Dex Files – the “Best of” the Android Framework JARs

– Each DEX contains potentially hundreds of classes

morpheus@Forge (~) % dextra Tests/boot.oat | grep DEX
DEX files: 14
DEX FILE 0: /system/framework/core-libart.jar @0xda10 (2132 classes)
DEX FILE 1: /system/framework/conscrypt.jar @0x2cfea8 (166 classes)
DEX FILE 2: /system/framework/okhttp.jar @0x311c14 (179 classes)
DEX FILE 3: /system/framework/core-junit.jar @0x3573f8 (19 classes)
DEX FILE 4: /system/framework/bouncycastle.jar @0x35d36c (824 classes)
DEX FILE 5: /system/framework/ext.jar @0x45dc40 (1017 classes)
DEX FILE 6: /system/framework/framework.jar @0x5a9508 (5858 classes)
DEX FILE 7: /system/framework/framework.jar:classes2.dex @0xef3c34 (1547 classes)
DEX FILE 8: /system/framework/telephony-common.jar @0x11e1b14 (551 classes)
DEX FILE 9: /system/framework/voip-common.jar @0x1369050 (76 classes)
DEX FILE 10: /system/framework/ims-common.jar @0x138e614 (42 classes)
DEX FILE 11: /system/framework/mms-common.jar @0x13a26e8 (1 classes)
DEX FILE 12: /system/framework/android.policy.jar @0x13a28a4 (117 classes)
DEX FILE 13: /system/framework/apache-xml.jar @0x13e4030 (658 classes)

ART Code Generation

• OAT Method headers point to offset of native code

Behind the Scenes of the Runtime

• Each method has a Quick or Portable Method Header
– Contains mapping from virtual register to underlying machine registers

• Each method also has a Quick or Portable Frame Info
– Provides frame size in bytes

– Core register spill mask

– FP register spill mask (largely unused)

• Generated code uses unusual registers

– Especially fond of using LR as call register

– Still saves/restores registers so as not to violate ARM conventions

ART Code Generation

• ART supports multiple architectures (x86, ARM/64, MIPS)

Behind the Scenes of the Runtime

• Compiler is a layered architecture*:

Front End (MIR)

Back End (LIR)

x86 X86_64 ARM ARM64 MIPS

High Level optimizations (e.g. GC)

Architecture specific considerations (e.g. Register maps)

* - Using Portable (LLVM) adds another level, with LLVM BitCode – which is outside the scope of this presentation

Example: AM.ODEX

Practical Example

private void runKillAll() throws Exception {
mAm.killAllBackgroundProcesses();

}

frameworks/base/cmds/am/src/com/android/commands/am /Am.java

15: void com.android.commands.am.Am.runKillAll() (dex_method_idx=164)
0x0000: iget-object v0, v1,

Landroid/app/IActivityManager; com.android.commands.am.Am.mAm
0x0002: invoke-interface {v0},

void android.app.IActivityManager.killAllBackgroundProcesses()
0x0005: return-void

• For a practical example, we consider am.odex
– Simple class, providing basic ActivityManager Command Line Interface

• We pick a simple method – runKillAll()
– One line method, demonstrating botch instance field access and method invocation

DEX code

Practical Example

0x00018d28: f5bd5c00 subs r12, sp, #8192
0x00018d2c: f8dcc000 ldr.w r12, [r12, #0]
suspend point dex PC: 0x0000
GC map objects: v1 (r6)

// Prolog: Stack setup, save registers
0x00018d30: e92d40e0 push {r5, r6, r7, lr}
0x00018d34: b084 sub sp, sp, #16
0x00018d36: 1c07 mov r7, r0
0x00018d38: 9000 str r0, [sp, #0]
0x00018d3a: 1c0e mov r6, r1
0x00018d3c: 6975 ldr r5, [r6, #20]
0x00018d3e: f04f0c11 mov.w r12, #17 // Note - 17
0x00018d42: 1c29 mov r1, r5
0x00018d44: 6808 ldr r0, [r1, #0]
suspend point dex PC: 0x0002 // invoke-interface {v0}, ...killAllBackground..
GC map objects: v0 (r5), v1 (r6)
0x00018d46: f8d000f4 ldr.w r0, [r0, #244]
0x00018d4a: f8d0e028 ldr.w lr, [r0, #40] ; Method at offset 40
0x00018d4e: 47f0 blx lr ; Execute method (note usage of lr)
suspend point dex PC: 0x0002
GC map objects: v0 (r5), v1 (r6)
0x00018d50: 3c01 subs r4, #1 ; Check VM Thread State
0x00018d52: f0008003 beq.w +6 (0x00018d5c)
// Epilog: Stack teardown, restore registers
0x00018d56: b004 add sp, sp, #16
0x00018d58: e8bd80e0 pop {r5, r6, r7, pc}
0x00018d5c: f8d9e230 ldr.w lr, [r9, #560] ; pTestSuspend
0x00018d60: 47f0 blx lr ; call pTestSuspend
suspend point dex PC: 0x0005
0x00018d62: e7f8 b -16 (0x00018d56)

oatdump –-oat-file=/system/frameworks/arm/am.odex

AM.ODEX
(arm)

Practical Example

0x0001c708: d1400be8 sub x8, sp, #0x2000 (8192)
0x0001c70c: f9400108 ldr x8, [x8]
suspend point dex PC: 0x0000 // iget-object v0, v1...
GC map objects: v1 (r21)
0x0001c710: d100c3ff sub sp, sp, #0x30 (48)
0x0001c714: a90157f4 stp x20, x21, [sp, #16]
0x0001c718: a9027bf6 stp x22, x30, [sp, #32]
0x0001c71c: aa0003f6 mov x22, x0
0x0001c720: b90003e0 str w0, [sp]
0x0001c724: aa0103f5 mov x21, x1
0x0001c728: b94016b4 ldr w20, [x21, #20]
0x0001c72c: 52800231 movz w17, #0x11 // 0x11 - 17
0x0001c730: aa1403e1 mov x1, x20
0x0001c734: b9400020 ldr w0, [x1]
suspend point dex PC: 0x0002 // invoke-interface {v0}, ...killAllBackground..
GC map objects: v0 (r20), v1 (r21)
0x0001c738: b9413000 ldr w0, [x0, #304] ; note w0 (32 bit register usage)
0x0001c73c: f940141e ldr x30, [x0, #40] ; method at offset 40
0x0001c740: d63f03c0 blr x30
suspend point dex PC: 0x0002
GC map objects: v0 (r20), v1 (r21)
0x0001c744: 71000673 subs w19, w19, #0x1 (1) // Check VM Thread State
0x0001c748: 540000a0 b.eq #+0x14 (addr 0xbeaf84b4)
0x0001c74c: a94157f4 ldp x20, x21, [sp, #16]
0x0001c750: a9427bf6 ldp x22, x30, [sp, #32]
0x0001c754: 9100c3ff add sp, sp, #0x30 (48)
0x0001c758: d65f03c0 ret
0x0001c75c: f941f65e ldr x30, [x18, #1000]
0x0001c760: d63f03c0 blr x30
suspend point dex PC: 0x0005
0x0001c764: 17fffffa b #-0x18 (addr 0xbeaf84b8)

oatdump –-oat-file=/system/frameworks/arm64/am.odex

AM.ODEX
(arm64)

Practical Example

0x0001bb18: 85842400E0FFFF test eax, [rsp + -8192]
suspend point dex PC: 0x0000
GC map objects: v1 (r5)
// Prolog: Stack setup, save registers
0x0001bb1f: 4883EC28 subq rsp, 40
0x0001bb23: 48895C2410 movq [rsp + 16], rbx
0x0001bb28: 48896C2418 movq [rsp + 24], rbp
0x0001bb2d: 4C89642420 movq [rsp + 32], r12
0x0001bb32: 4C8BE7 movq r12, rdi
0x0001bb35: 893C24 mov [rsp], edi
0x0001bb38: 488BEE movq rbp, rsi
0x0001bb3b: 8B5D14 mov ebx, [rbp + 20]
0x0001bb3e: B811000000 mov eax, 17 // Again, 17
0x0001bb43: 488BF3 movq rsi, rbx
0x0001bb46: 8B3E mov edi, [rsi]
suspend point dex PC: 0x0002
GC map objects: v0 (r3), v1 (r5)
0x0001bb48: 8BBF34010000 mov edi, [rdi + 308]
0x0001bb4e: FF5728 call [rdi + 40] ; Again, offset 40
suspend point dex PC: 0x0002
GC map objects: v0 (r3), v1 (r5)
0x0001bb51: 6566833C250000000000 cmpw gs:[0], 0 ; state_and_flags
0x0001bb5b: 7514 jnz/ne +20 (0x0001bb71)
// Epilog: Stack teardown, restore registers
0x0001bb5d: 488B5C2410 movq rbx, [rsp + 16]
0x0001bb62: 488B6C2418 movq rbp, [rsp + 24]
0x0001bb67: 4C8B642420 movq r12, [rsp + 32]
0x0001bb6c: 4883C428 addq rsp, 40
0x0001bb70: C3 ret
0x0001bb71: 65FF1425E8030000 call gs:[1000] ; pTestSuspend
suspend point dex PC: 0x0005
0x0001bb79: EBE2 jmp -30 (0x0001bb5d)
0x0001bb7b: 0000 addb [rax], al ; padding (not executed)

oatdump –-oat-file=/system/frameworks/x86_64/am.ode x

AM.ODEX
(x86_64)

Some lessons

• Base code is DEX – so VM is still 32-bit
– No 64-bit registers or operands - so mapping to underlying arch isn’t always 64-bit

• Generated code isn’t always that efficient

– Not on same par as an optimizing native code compiler

– Likely to improve with LLVM optimizations

• Overall code flow (determined by MIR optimization) is same

• Garbage collection, register maps, likewise same

• Caveats:

– Not all methods guaranteed to be compiled

– Reversing can be quite a pain...

Behind the Scenes of the Runtime

Example: Reversing OAT

• You can use the AOSP-supplied OATDUMP to disassemble OAT
Usage: oatdump [options] ...

...
--oat-file=<file.oat>: specifies an input oat filename.

--image=<file.art>: specifies an input image filename.

--boot-image=<file.art>: provide the image file for the boot class path.

--instruction-set=(arm|arm64|mips|x86|x86_64): for locating the image

--output=<file> may be used to send the output to a file.

--dump:raw_mapping_table enables dumping of the mapping table.

--dump:raw_mapping_table enables dumping of the GC map.

--no-dump:vmap may be used to disable vmap dumping.

--no-disassemble may be used to disable disassembly.

Practical Example

(Interactive Demo)

Example: Reversing OAT

Usage: dextra [...] _file_
Where: _file_ = DEX or OAT file to open
And [...] can be any combination of:

-c: Only process this class
-m: show methods for processed classes (implies -c *)
-f: show fields for processed classes (implies -c *)
-p: Only process classes in this package
-d: Disassemble DEX code sections (like dexdump does - implies -m)
-D: Decompile to Java (new feature, still working on it. Implies -m)

Or one of:
-h: Just dump file header
-M [_index_]: Dump Method at _index_, or dump all methods
-F [_index_]: Dump Field at _index_, or dump all fields
-S [_index_]: Dump String at _index_, or dump all strings
-T [_index_]: Dump Type at _index_, or dump all types

OAT specific switches:
-dextract Extract embedded DEX content from an OAT files

And you can always use any of these output Modifiers:
-j: Java style output (default is JNI, but this is much better)
-v: verbose output
-color: Color output (can also set JCOLOR=1 environment variable)

• In most cases, using DEXTRA (formerly Dexter) may make sense:

Practical Example

(Interactive Demo)

Caveat

• DEXTRA is still a work in progress
– No disassembly of native/portable code (yet), Just DEX (but with decompilation!)

• Tool MAY Crash – especially on ART files

– It would help if Google’s own oatdump was:

A) Actually readable code, with C structs instead of C++ serializations!

B) Actually worked and didn’t crash so frequently

• Please use and abuse dextra, and file bug reports

– Check frequently for updates (current tool version is presently 1.2)

– http://www.newandroidbook.com/tools/dextra.html

Practical Example

ART Runtime threads

• The runtime uses several worker threads, which it names:

Following the pattern demonstrated to enumerate prctl(2) named threads:
root@generic:/proc/$app_pid/task # for x in *; do grep Name $x/status; done
Name: android.browser # Main (UI) thread, last 16 chars of classname
Name: Signal Catcher # Intercepts SIGQUIT and SIGUSR1 signals
Name: JDWP # Java Debug Wire Protocol
Runtime::StartDaemonThreads() calls libcore’s java.lang.Daemons for these
Name: ReferenceQueueD # Reference Queue Daemon (as in Dalvik)
Name: FinalizerDaemon # Finalizer Daemon (as in Dalvik)
Name: FinalizerWatchd # Finalizer Watchdog (as in Dalvik)
Name: HeapTrimmerDaem # Heap Trimmer
Name: GCDaemon # Garbage Collection daemon thread
Additional Thread Pool Worker threads may be started
...

Behind the Scenes of the Runtime

ART Runtime threads

Behind the Scenes of the Runtime

• The Daemon Threads are started in Java, by libcore

– Daemon class wraps thread class, provides singleton INSTANCE

– Do same basic operations as they did in “classic” DalvikVm

• Libart subtree in libcore implementation slightly different

ART Runtime threads

Behind the Scenes of the Runtime

• The Signal Catcher thread responds to SIGQUIT and SIGUSR1:

– SIGUSR1 forces garbage collection:

– And outputs to the Android logs as I/art with the PID signaled:

– SIGQUIT doesn’t actually quit, but dumps statistics to /data/anr/traces.txt

• Statistics are appended, so it’s a bad idea to delete the file while system is running

void SignalCatcher::HandleSigUsr1() {
LOG(INFO) << "SIGUSR1 forcing GC (no HPROF)";
Runtime::Current()->GetHeap()->CollectGarbage(false);

}

runtime/signal_catcher.cc

I/art (806): Thread[2,tid=812,WaitingInMainSignalCatcherLoop,Thread*=0xaee9d400,
peer=0x12c00080, "Signal Catcher"]: reacting to signal 10

I/art (806): SIGUSR1 forcing GC (no HPROF)
I/art (806): Explicit concurrent mark sweep GC freed 16(1088B) AllocSpace objects,

0(0B) LOS objects, 63% free, 297KB/809KB, paused 745us total 238.066msss

ART Statistics

----- pid ... at 2014-11-17 20:22:55 -----
Cmd line: com.android.dialer
ABI: arm # 32-bit ARMv7 architecture
Build type: optimized
Loaded classes: 3596 allocated classes
Intern table: 4639 strong; 239 weak
JNI: CheckJNI is on; globals=246
Libraries: ... # List of native runtime libraries from /system/lib (possibly vendor)
Heap: 63% free, currentKB/maxKB; number objects
Dumping cumulative Gc timings
Start Dumping histograms for 247 iterations for concurrent mark sweep
... Detailed garbage collection histograms
Done Dumping histograms
Total time spent in GC: 31.345s
Mean GC size throughput: 831KB/s
Mean GC object throughput: 3366.85 objects/s
Total number of allocations 142890
Total bytes allocated 25MB
Free memory 512KB
Free memory until GC 512KB
Free memory until OOME 63MB
Total memory 807KB
Max memory 64MB
Total mutator paused time: 625.069ms
Total time waiting for GC to complete: 37.614ms

/data/anr/traces.txt

Behind the Scenes of the Runtime

ART Statistics

DALVIK THREADS (##):
"main" prio=5 tid=1 Native # Native, Waiting, or Runnable
| group="main" sCount=1 dsCount=0 obj=0x7485b970 self=0xb5007800
| sysTid=806 nice=0 cgrp=apps/bg_non_interactive sched=0/0 handle=0xb6f5fec8
| state=S schedstat=(260000000 14200000000 134) utm=10 stm=16 core=0 HZ=100
| stack=0xbe4e4000-0xbe4e6000 stackSize=8MB
| held mutexes=
kernel: sys_epoll_wait+0x1d4/0x3a0 # (wchan)
kernel: sys_epoll_pwait+0xac/0x13c # (system call invoked) <------+
kernel: ret_fast_syscall+0x0/0x30 # (entry point) |
native: #00 pc 00039ed8 /system/lib/libc.so (__epoll_pwait+20) -------+
native: #01 pc 00013abb /system/lib/libc.so (epoll_pwait+26)
native: #02 pc 00013ac9 /system/lib/libc.so (epoll_wait+6)

Managed stack frames (if any) follow (from Java’s printStackTrace())
at android.os.MessageQueue.nativePollOnce(Native method)
at android.os.MessageQueue.next(MessageQueue.java:143)
at android.os.Looper.loop(Looper.java:122)
at android.app.ActivityThread.main(ActivityThread.java:5221)
at java.lang.reflect.Method.invoke!(Native method)
at java.lang.reflect.Method.invoke(Method.java:372)
at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:899)
at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:694)

... (for as many as ## threads, above)

/data/anr/traces.txt

Behind the Scenes of the Runtime

ART Memory Allocation

• ART has not one, but two underlying allocators:

– DLMalloc: The traditional libc allocator, from Bionic

• Not optimized for threads (uses a global memory lock)

• Inter-thread conflicts arise, as do potential collisions with GC

– ROSalloc: Runs-of-Slots-Allocator (art/runtime/gc/allocator/rosalloc.h)

• Allows thread-local-storage region for reasonably small objects

– Separate Thread Local bit map used, which GC can access with no lock

• Supports “Bulk Free”:

– GC first marks slots to free (with no lock)

– Bulk free operation uses one lock, and frees all slots with indicated bits

• Larger objects can be locked independently of others

Behind the Scenes of the Runtime

ART Garbage Collection

• ART uses not one, but two Garbage Collectors:

– The Foreground collector

– The Background collector

• There are also no less than eight garbage collection algorithms:

Behind the Scenes of the Runtime

Mark/Sweep

Concurrent Mark/Sweep

Semi-Space, Mark/Sweep

Generation Semi-Space

Mark Compact Collector

Heap Trimming Collector

Concurrent Copying Collector

Homogenous Space Compactor

Takeaways

• ART is a far more advanced runtime architecture
– Brings Android closer to iOS native level performance (think: Objective-C*)

* - Unfortunately, iOS is moving away again with SWIFT and METAL both offering significant performance boosts over OBJ-C

• Vestiges of DEX still remain, to haunt performance
– DEX Code is still 32-bit

• Very much still a shifting landscape
– Internal structures keep on changing – Google isn’t afraid to break compatibility

– LLVM integration likely to only increase and improve

• For most users, the change is smooth:
– Better performance and power consumption

– Negligible cost of binary size increase (and who cares when you have SD?)

– Minor limitations on DEX obfuscation remain.

– For optimal performance (and obfuscation) nothing beats JNI...

That’s all, folks!

