
Dalvik and ART

Jonathan Levin

http://NewAndroidBook.com/

http://www.technologeeks.com

Wait.. Isn’t Android all ART now?

• Well.. Yes, and no.. The actual runtime is ART, but..

– Your applications still compile into Dalvik (DEX) code

– Final compilation to ART occurs on the device, during install

– Even ART binaries have Dalvik embedded in them

– Some methods may be left as DEX, to be interpreted

– Dalvik is much easier to debug than ART.

Preface

What we won’t be discussing

• Dalvik VM runtime architecture*

– Mostly replaced by ART, prominent features removed

– No talk about JIT (ART does AOT)

– No JNI

• Dalvik specific debug settings

– Not really relevant anymore, either

Preface

* - We discuss these aspects later on, in the contex t of ART – but that’s part II

What we will be discussing

• DEX file structure

• DEX code generation

• DEX verification and optimization

• DEX decompilation and reverse engineering

Preface

Interlude (Necessary Plug)

• Me: Jonathan Levin, CTO of http://Technologeeks.com

– Training and consulting on internals/debugging, networking

– Follow us on Twitter (@Technologeeks), Etc. Etc. Etc

• My Book: “Android Internals: A Confectioner’s Cookbook”

– http://www.NewAndroidBook.com/ for tools, articles, and more

– Unofficial sequel to Karim Yaghmour’s “Embedded Android”

• More on the how and why Android frameworks and services work

– (presently) only in-depth book on the subject

• Just in case anyone’s into iOS (w/41% probability?)

– http://www.newosxbook.com/

– 2nd Edition (covers iOS 8, OS X 10.10) due March ‘15

Preface

Part I - Dalvík

Dalvík and the Android Architecture

The Dalvík Virtual Machine* is:

� Customized, optimized JVM

- Based on Apache “Harmony” JVM

� Java compiles into DEX code

� 16-bit opcodes

� Register, rather than stack-based

� Not fully J2SE or J2ME compatible

Dalvík

* - Android L replaces Dalvik by the Android RunTime – but does not get rid of it fully (more later)

Bionic

JNI .
Dalvik VM Native

Binaries

Frameworks

Applications

Linux 2.6.21-3.x Kernel

Hardware

Native Libraries

HAL

A Brief History of Dalvík

• Dalvík was introduced along with Android

– Created by Dan Bornstein

– Named after an Icelandic town

• 2.2 (Froyo) brought Just-in-Time compilation

• 4.4 (KitKat) previews ART

• 5.0 (Lollipop) ART supersedes.

Dalvik, Iceland (photo by the author)

Dalvík

Dalvik VM vs. Java

Dalvik vs. Java

• Dalvík is a virtual machine implementation

– Based on Apache Harmony

– Borrows heavily from Java*

• Brings significant improvements over Java, in particular J2ME:

– Virtual Machine architecture is optimized for memory sharing

• Reference counts/bitmaps stored separately from objects

• Dalvik VM startup is optimized through Zygote

• Java .class files are further compiled into DEX.

* - So heavily, in fact, that Oracle still carries S un’s grudge against Google

Reminder: Creating an APK

*.java jar Classes.dex
javac dx

R.java

Resources.arsc

res/*

AndroidManifest

res/*
res/*.*

aapt

app.jar

jar

jarsigner

app.apk

DEX Files

The DEX file format

• The “dx” utility converts multiple .class files to classes.dex

– Script wrapper over java -Xmx1024M -jar ${SDK_ROOT}.../lib/dx.jar

– Java byte code is converted to DEX bytecode
• DEX instructions are 16-bit multiples, as opposed to Java’s 8-bit

– Constant, String, Type and Method pools can be merged
• Significant savings for strings, types, and methods in multiple classes

• Overall memory footprint diminished by about 50%

• DEX file format fully specified in Android Documentation

DEX Files

signature

The DEX file format

DEX Files

Magic

checksum

File size Header size

Endian tag Link size

Link offset Map offset

String IDs Size String IDs offset

Type IDs Size Type IDs offset

Proto IDs Size Proto IDs offset

Field IDs Size Field IDs offset

Classdef IDs Size Classdef IDs offset

Data Size Data offset

DEX Magic header ("dex\n“ and version (“035 “)

Adler32 of header (from offset +12)

SHA-1 hash of file (20 bytes)

Total file size Header size (0x70)

0x12345678, in little or big endian form Unused (0x0)

Unused (0x0) Location of file map

Number of String entries

Number of Type definition entries

Number of prototype (signature) entries)

Number of method ID entries

Number of Class Definition entries

Data (map + rest of file)

Method IDs Size MethodIDs offset

Number of field ID entries

The DEX file format

DEX Files

Type Implies Size Offset

0x0 DEX Header 1 (implies Header Size) 0x0

0x1 String ID Pool Same as String IDs size Same as String IDs offset

0x2 Type ID Pool Same as Type IDs size Same as String IDs offset

0x3 Prototype ID Pool Same as Proto IDs size Same as ProtoIDs offset

0x4 Field ID Pool Same as Field IDs size Same as Field IDs offset

0x5 Method ID Pool Same as Method IDs size Same as Method IDs offset

0x6 Class Defs Same as ClassDef IDs size Same as ClassDef IDs offset

0x1000 Map List 1 Same as Map offset

0x1001 Type List List of type indexes (from Type ID Pool)

0x1002

0x1003

Annotation set

Annotation Ref

Used by Class, method and field annotations

0x2000 Class Data Item For each class def, class/instance methods and fields

0x2001 Code DexCodeItems – contains the actual byte code

0x2002 String Data Pointers to actual string data

0x2003 Debug Information Debug_info_items containing line no and variable data)

0x2004 Annotation Field and Method annotations

0x2005 Encoded Array Used by static values

0x2006 Annotations Directory Annotations referenced from individual classdefs

signature

Magic

checksum

File size Header size

Endian tag Link size

Link offset Map offset

String IDs Size String IDs offset

Type IDs Size Type IDs offset

Proto IDs Size Proto IDs offset

Field IDs Size Field IDs offset

Classdef IDs Size Classdef IDs offset

Data Size Data offset

Method IDs Size MethodIDs offset

Looking up classes, methods, etc.

• Internally, DEX instructions refer to Indexes (in pools)

• To find a method:

– DexHeader’s Method IDs offset points to an array of MethodIDs

– Each method ID points to a class index, prototype index and method name

• To find a field:

– DexHeader’s Field Ids offset points to an array of FieldIDs

– Each Field ID points to a class index, type index, and the field name

• To get a class:

– DexHeader’s Class Defs Ids offset points to an array of ClassDefs

– Each ClassDef points to superclass, interface, and class_data_item

– Class_data_item shows # of static/instance fields, direct/virtual methods

– Class_data_item is followed by DexField[], DexMethod[] arrays
• DexField, DexMethod point to respective indexes, as well as class specific access flags

DEX Files

DEX Files

Finding a class’s method code
class_idx

access_flags

superclass_idx

Interfaces_off

source_file_idx

annotations_off

class_data_off

static_values_off

Index of the class’ type id, from Type ID pool

ACC_PUBLIC, _PRIVATE, _PROTECTED, _STATIC, _FINAL, etc. Etc..

Index of the superclass’ type id, from Type ID pool

Offset of type_list containing this class’ implemented interface, if any

Index of the source file name, in String pool

Offset of an annotations_directory_item for this class

Offset of this class’s class_data_item

Offset to initial values of any fields defined as static (i.e. Class)

access_flags and static_values_off particulary useful for fuzzing/patching classes

DEX Files

of static (class) fields

of instance fields

Field idx (diff) Access flags

Finding a class’s method code

of direct methods

of virtual methods

...

Method idx (diff) Access flags

...

Code Offset

....

(II)

(static + instance field count) x encoded_field

(direct + virtual count) x encoded_method

class_idx

access_flags

superclass_idx

Interfaces_off

source_file_idx

annotations_off

class_data_off

static_values_off

Class_data_item fields are all ULEB128 encoded (*sigh*)

class_data_item

ClassDef Item

DEX Files

of static (class) fields

of instance fields

Field idx (diff) Access flags

Finding a class’s method code

of direct methods

of virtual methods

...

Method idx (diff) Access flags

...

(III)
F

ro
m

 C
la

ss
D

e
f

Code Offset

of registers used by code item

of words used by in parameters

of words used by out parameters

of try items (try/catch blocks)

Offset of debug_info_items

of instructions (x 16-bit)

... Actual DEX ByteCode is here ...

class_data_item

code_item

The DEX Bytecode

• The Android Documentation is good, but lacking

– Bytecode instruction set

– Instruction formats

• No documentation on optimized code

– ODEX codes (used in 0xE3-0xFF) are simply marked as “unused”

• Not yet updated to reflect ART DEX changes (still undocumented)

– DEX opcode 0x73 claimed by return-void-barrier

– ODEX codes 0xF2-0xFA are moved to 0xE3-0xEB. 0xEC-0xFF now unused

DEX Bytecode

The DEX Bytecode

• VM Architecture allows for up to 64k registers

– In practice, less than 16 are actively used

• Bytecode is method, field, type and string aware

– Operands in specific instructions are IDs from corresponding pools

• Bytecode is also primitive type-aware

– Instructions support casting, as well as specific primitive types

• DEX bytecode is strikingly similar to Java bytecode

– Allows for easy de/re-compilation back and forth to/from java

DEX Bytecode

DEX vs. Java

• Java VM is stack based, DEX is register based

– Operations in JVM use stack and r0-r3; Dalvik uses v0-v65535

– Stack based operations have direct register-base parallels

– Not using the stack (= RAM, via L1/L2 caches) makes DEX somewhat faster.

• Java Bytecode is actually more compact than DEX

– Java instructions take 1-5 bytes, DEX take 2-10 bytes (in 2-byte multiples)

• DEX bytecode is more suited to ARM architectures

– Straightforward mapping from DEX registers to ARM registers

• DEX supports bytecode optimizations, whereas Java doesn’t

– APK’s classes.dex are optimized before install, on device (more later)

DEX vs. Java Bytecode

DEX Opcode Java Bytecode Purpose

60-66:sget-*

52-58:iget-*

b2:getstatic

b4:getfield

Read a static or instance variable

67-6d:sput

59-5f:iput

b3:putstatic

b5:putfield

Write a static or instance variable

6e: invoke-virtual

6f: invoke-super

70: invoke-direct

71: invoke-static

72: invoke-interface

b6: Invokevirtual

ba: invokedynamic

b7: invokespecial

b8: Invokestatic

b9: Invokeinterface

Call a method

20: instance-of c1: instanceof Return true if obj is of class

1f: check-cast c0: checkcast Check if a type cast can be performed

bb:new 22: new-instance New (unconstructed) instance of object

DEX vs. Java Bytecode

Class, Method and Field operators

DEX vs. Java Bytecode

DEX Opcode Java Bytecode Purpose

32..37: if-*

38..3d: if-*z

a0-a6: if_icmp*

99-9e: if*

Branch on logical

2b: packed-switch ab: lookupswitch Switch statement,

2c: sparse-switch aa: tableswitch Switch statement

28: goto

29: goto/16

30: goto/32

a7: goto

c8: goto_w

Jump to offset in code

27: throw bf:athrow Throw exception

DEX vs. Java Bytecode

Flow Control instructions

DEX vs. Java Bytecode

DEX Opcode Java Bytecode Purpose

12-1c: const* 12:ldc

13: ldc_w

14: ldc2_w

Define Constant

21: array-length be: arraylength Get length of an array

23: new-array bd: anewarray Instantiate an array

24-25: filled-new-array[/range]

26: fill-array-data

N/A Populate an array

DEX vs. Java Bytecode

Data Instructions

Arithmetic instructions are, likewise, highly similar

DEX vs. Java Bytecode

DEX vs. Java Bytecode

• Example: A “Hello World” activity:

DEX vs. Java Bytecode

DEX to Java

• It comes as no surprise that .dex and .class are isomorphic

• DEX debug items map DEX offsets to Java line numbers

• Dex2jar tool can easily “decompile” from .dex back to a .jar

• Standard Practice:

• Extremely useful for reverse engineering

– Even more so useful for malice and mischief

classes. dex jar java

Source code:

- : no comments

+ : nicely indented

Single JAR file with

multiple .class files

DEX file from a given .apk

dex2jar JAD, DJ-, etc

Decompilation

DEX to Java

classes. dex jar java

Source code:

- : no comments

+ : nicely indented

Single JAR file with

multiple .class files

DEX file from a given .apk

dex2jar JAD, DJ-, etc

javacdx

• Flow from DEX to JAVA is bidirectional, meaning that an attacker can:

• Decompile your code back to Java

• Remove annoyances like ads, registration

• Uncover sensitive data (app logic, or poorly guarded secrets)

• Replace certain classes with others, potentially malicious ones

• Recompile back to JAR, then DEX

• Put cloned/trojaned version of your app on Play or another market

• ASEC/OBB “solutions” for this fail miserably when target device is rooted.

Decompilation

DEX Obfuscation

• Quite a few DEX “obfuscators” exist, with different approaches:

– Functionally similar to binutils’ strip, either java (ProGuard) or sDEX

• Rename methods, field and class names

• Break down string operations so as to “chop” hard-coded strings, or encrypt

• Can use dynamic class loading (DexLoader classes) to impede static analysis

– Can add dead code and dummy loops (at minor impact to performance)

– Can also use goto into other instructions (e.g. DexLABS)

DEX Obfuscation and Optimization

• In practice, quite limited, due to:

– Reliance on Android Framework APIs (which remain unobfuscated)

– JDWP and application debuggability at the Java level

– If Dalvik can execute it, so can a proper analysis tool (e.g. IDA, dextra)

– Popular enough obfuscators (e.g. DexGuard) have de-obfuscators...

• ... Which is why JNI is so popular

root@android:/data/dalvik-cache # ls -s
total 28547
24 system@app@ApplicationsProvider.apk@classes.dex
1359 system@app@Browser.apk@classes.dex
958 system@app@Contacts.apk@classes.dex
625 system@app@ContactsProvider.apk@classes.dex
99 system@app@DeskClock.apk@classes.dex
795 system@app@DownloadProvider.apk@classes.dex
13 system@app@DrmProvider.apk@classes.dex
...
root@android# file system\@app\@LatinIME.apk\@classes.dex
system@app@LatinIME.apk@classes.dex: Dalvik dex file (optimized for host) version 036

DEX Optimization (dexopt)

• Pre-5.0, installd runs dexopt on APK, during installation

– Extracts the APK’s classes.dex

– Performs runtime verification and optimization

– Plops optimized DEX file in /data/dalvik-cache

• ART still optimizes DEX, but uses dex2oat instead (q.v. Part II)
– ODEX files are actually now OAT files (ELF shared objects)

– Actual DEX payload buried deep inside

DEX Obfuscation and Optimization

shell@hammerhead:/ $ dexopt
Usage:

Short version: Don't use this.

Slightly longer version: This system-internal tool is used to
produce optimized dex files. See the source code for details.

DEX Optimization (dexopt)

• dexopt is user-friendly ... But only for the right user (installd)

• The program runs a Dalvik VM with special switches

DEX Obfuscation and Optimization

DEX Optimization (dexopt)

• What happens during optimization?

– Bytecode verification: Deducing code paths, register mapss, and precise GC

– Wrapping with ODEX header (for optimized data/dependency tables)

– Opcodes replaced by quick opcode variants*

DEX Opcode ODEX Opcode Optimization

0e: return-void 73: return-void-barrier Barrier (in constructors)

52:iget e3: iget-quick Use byte offset for field,

eliminating costly lookup,

and merge primitive

datatypes into a 32-bit

(wide) instruction, reducing

overall code size.

53: iget-wide e4: iget-wide-quick

54: iget-object e5:iget-object-quick

59: iput e6: iput-quick

5a: iput-wide e7: iput-wide-quick

5b: iput-object e8: iput-object-quick

6e: invoke-virtual e9/ea: invoke-virtual-quick[/range] Vtable, eliminating lookup

* - Pre-ART optimization also added execute-inline, a s well as –volatile variants for iget/iput – but tho se have been removed

DEX Obfuscation and Optimization

art/compiler/dex/dex_to_dex_compiler.cc

DEX Optimization (dexopt)

DEX Obfuscation and Optimization

Example: Reversing DEX

• You can use the AOSP-supplied DEXDUMP to disassemble DEX

(~)$ $SDK_ROOT/build-tools/android-4.4.2/dexdump
dexdump: no file specified
Copyright (C) 2007 The Android Open Source Project

dexdump: [-c] [-d] [-f] [-h] [-i] [-l layout] [-m] [-t tempfile] dexfile...

-c : verify checksum and exit
-d : disassemble code sections
-f : display summary information from file header
-h : display file header details
-i : ignore checksum failures
-l : output layout, either 'plain' or 'xml'
-m : dump register maps (and nothing else)
-t : temp file name (defaults to /sdcard/dex-temp-*)

Practical Example

(Interactive Demo)

Example: Reversing DEX

Usage: dextra [...] _file_
Where: _file_ = DEX or OAT file to open
And [...] can be any combination of:

-c: Only process this class
-m: show methods for processed classes (implies -c *)
-f: show fields for processed classes (implies -c *)
-p: Only process classes in this package
-d: Disassemble DEX code sections (like dexdump does - implies -m)
-D: Decompile to Java (new feature, still working on it. Implies -m)

Or one of:
-h: Just dump file header
-M [_index_]: Dump Method at _index_, or dump all methods
-F [_index_]: Dump Field at _index_, or dump all fields
-S [_index_]: Dump String at _index_, or dump all strings
-T [_index_]: Dump Type at _index_, or dump all types

OAT specific switches:
-dextract Extract embedded DEX content from an OAT files

And you can always use any of these output Modifiers:
-j: Java style output (default is JNI, but this is much better)
-v: verbose output
-color: Color output (can also set JCOLOR=1 environment variable)

• Alternatively, use DEXTRA (formerly Dexter)

Practical Example

(Interactive Demo)

Example: Reversing DEX

• You can use the AOSP-supplied DEXDUMP to disassemble DEX

(~)$ JCOLOR=1 dextra –d –D Tests/classes.dex
...

public class com.technologeeks.BasicApp.MainActivity
extends android.app.Activity {

public void <init> () // Constructor
{
result = android.app.Activity.<init>(v0); // (Method@0)
}

public void onCreate (android.os.Bundle)
{
v0 = java.lang.System.out; // (Field@4)
v1 = “It Works!\n"; // (String@3)
result = java.io.PrintStream.println(v0, v1); // (Method@11)
result = android.app.Activity.onCreate(v2, v3); // (Method@1)
v0 = 0x7f030018;
result = com.technologeeks.BasicApp.MainActivity.

setContentView(v2, v0); // (Method@5)
}
} // end class com.technologeeks.BasicApp.MainActivity

Practical Example

(Interactive Demo)

So why is Dalvik deprecated?

• JIT is slow, consuming both cycles and battery power

• Garbage collection (esp. GC_FOR_ALLOC) causes hangs/jitter

• Dalvik VM is 32-bit, and can’t benefit from 64-bit architecture

– And everybody* wants 64-bit, now that iOS has it...

• KitKat was the first to introduce ART, And Lollipop adopts it

– For more details on ART Internals, stick around for Part II..

* - Well, maybe everybody except Qualcomm ... Or .. On second thought, maybe they do, too ?

Summary

Take Away

• DEX is a Dangerous Executable format...

– Risks to app developers are significant, with no clear solutions

– (And we haven’t even mentioned fun with DEX fuzzing)

• DEX isn’t DEAD yet – even with ART:

– Still buried deep inside those OAT files

– FAR easier to reverse engineer embedded DEX, than do so for OAT

Summary

Stick around for Part II – after the break!

Parts we didn’t discuss here are in the book

