
区块链技术
Blockchain Technologies

密码学基础

Intro to cryptography

Spring 2022

What is a blockchain?

Abstract answer: a blockchain provides

• coordination between many parties,

• when there is no single trusted party

if trusted party exists ⇒ no need for a blockchain

[financial systems: often no trusted party]

What is all the excitement about?

(1) Basic application: a digital currency (stored value)

• Current largest: Bitcoin (2009), Ethereum (2015)

• Global: accessible to anyone with an Internet connection

What is all the excitement about?

(1) Basic application: a digital currency (stored value)
• Current largest: Bitcoin (2009), Ethereum (2015)

• Global: accessible to anyone with an Internet connection

(2) Beyond stored value: decentralized applications (DAPPs)
• DeFi: financial applications managed by public programs

• examples: stablecoins, lending, exchanges, ….
• Asset management (e.g., art, domain names, games).
• Decentralized organizations (DAOs)

• DAOs for 投资、捐赠、艺术品收藏…

(3) New programming model: writing decentralized programs

Transaction volume

(Sep, 2020)

Central Bank Digital Currency (CBDC)

What is a blockchain?

consensus layerLayer 1:

compute layer (blockchain computer)Layer 1.5:

applications (DAPPs, smart contracts)Layer 2:

user facing tools (cloud servers)Layer 3:

Consensus layer (informal)

A public append-only data structure:

• Persistence: once added, data can never be removed*

• Consensus: all honest participants have the same data**

• Liveness: honest participants can add new transactions

• Open(?): anyone can add data (no authentication)

consensus layerLayer 1:

achieved by replication

How are blocks added to chain?

blockchain

I am the
leader

2 ETH

verify
block

verify
block

skA

skB

skC

signed

How are blocks added to chain?

blockchain

I am the
leader2 ETH

2 ETH

…

skA

skB

skC

Why is consensus a hard problem?

Tx1

Tx2

Tx3

Tx4

Tx1, Tx2, Tx3, Tx4 Tx1, Tx2, Tx3, Tx4

Tx1, Tx2, Tx3, Tx4Tx1, Tx2, Tx3, Tx4

Why is consensus a hard problem?

Tx1

Tx2

Tx3

Tx4

Tx1, Tx2, Tx3, Tx4 Tx1, Tx2, Tx3, Tx4

Tx1, Tx2, Tx3, Tx4Tx1, Tx2, Tx3, Tx4

Problems:
• Network delay
• Network partition

∆

∆

Why is consensus a hard problem?

Tx1

Tx2 Tx4

Tx1, Tx2, Tx4

Tx1, Tx2, Tx4Tx1, Tx2, Tx4

Problems:
• crash
• malice

Layer 1.5: The blockchain computer

DAPP logic is encoded in a program that runs on blockchain

• Rules are enforced by a public program (public source code)

⇒ transparency: no single trusted 3rd party

• The DAPP program is executed by parties who create new blocks

⇒ public verifiability: everyone can verify state transitions

consensus layerLayer 1:

compute layerLayer 1.5:

Layer 2: Decentralized applications (DAPPS)

consensus layerLayer 1:

blockchain computerLayer 1.5:

Layer 2: applications (DAPPs, smart contracts)

Run on

blockchain

computer

Layer 3: Common DAPP architecture

consensus layer

blockchain computer

DAPP DAPPDAPP

end user

Layer 3: user facing servers

on-chain
state

(layer 1)

(layer 1.5)

(layer 2)

[source: the Block Genesis]

lots of experiments …

This course

Cryptography Distributed systems

Economics

Course organization

1. The starting point: Bitcoin mechanics

2. Consensus protocols

3. Ethereum and decentralized applications

4. Economics of decentralized applications

5. Scaling the blockchain: 10K Tx/sec and more

6. Private transactions on a public blockchain
(SNARKs and zero knowledge proofs)

7. 跨链互操作性： bridges and wrapped coins

请随时提出问题，不要等到期末!

Let’s get started …

Cryptography Background

(1) cryptographic hash functions

An efficiently computable function 𝐻: 𝑀 ⇾ 𝑇

where |𝑀| ≫ |𝑇|

megabytes hash value

32 bytes

𝑇 = {0,1}256

Collision resistance(抗碰撞)

Def: a collision for 𝐻:𝑀 ⇾ 𝑇 is pair 𝑥 ≠ 𝑦 ∈ 𝑀 s.t. 𝐻(𝑥) = 𝐻(𝑦)

|𝑀| ≫ |𝑇| implies that many collisions exist

Def: a function 𝐻:𝑀 ⇾ 𝑇 is collision resistant if it is “hard” to find
even a single collision for 𝐻 (we say 𝐻 is a CRHF)

Example: SHA256: {𝑥 : len(𝑥)<264 bytes} ⇾ {0,1}256

An application: committing to data(承诺)

Alice has a large file 𝑚. She publishes ℎ = 𝐻(𝑚) (32 bytes)

Bob has ℎ. Later he learns 𝑚’ s.t. 𝐻(𝑚’) = ℎ

𝐻 is a CRHF ⇒ Bob is convinced that 𝑚’ = 𝑚
(otherwise, 𝑚 and 𝑚’ are a collision for 𝐻)

We say that ℎ = 𝐻(𝑚) is a binding commitment (绑定性)to 𝑚

(note: not hiding, ℎ may leak information about 𝑚)

（隐匿性有限，不具备随机性，对同一个敏感数据，H(v)值总是固定的）

Committing to a list (of transactions)

Alice has 𝑆 = (𝑚1, 𝑚2, … ,𝑚𝑛)

Goal:

- Alice publishes a short binding commitment to 𝑆, ℎ = commit(𝑆)

- Bob has ℎ. Given 𝑚𝑖, proof π𝑖 can check that 𝑆[𝑖] = 𝑚𝑖

Bob runs verify ℎ, 𝑖,𝑚𝑖, π𝑖 ⇾ accept/reject

security: adv. cannot find (𝑆, 𝑖, 𝑚, 𝜋) s.t. 𝑚 ≠ 𝑆[𝑖] and

verify(ℎ, 𝑖, 𝑚, 𝜋) = accept where ℎ = commit(𝑆)

32 bytes

Committing to a list

method 1: commit(S) = ℎ = 𝐻(𝐻(𝑚1), … ,𝐻(𝑚𝑛))

Later: given ℎ,𝑚1 and 𝐻(𝑚2), … , 𝐻(𝑚𝑛) Bob can check 𝑆[1] = 𝑚1

Problem: long proof! (𝑛 − 1) hash values

Better method: Merkle tree. Proof length = log2𝑛 hash values

proof π1

Merkle tree (Merkle 1989)

Merkle tree
commitment

ℎ

𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚7𝑚6 𝑚8

list of values S

Goal:
• commit to list S
• Later prove 𝑆[𝑖] = 𝑚𝑖

commitment

Merkle tree (Merkle 1989)

𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚7𝑚6 𝑚8

list of values S

ℎ

H H H H

H H

H

Goal:
• commit to list S
• Later prove 𝑆[𝑖] = 𝑚𝑖

To prove 𝑆 4 = 𝑚4 ,

proof π = 𝑚3, 𝑦1, 𝑦6

𝑦1 𝑦2 𝑦3 𝑦4

𝑦5 𝑦6

length of 𝜋: log2 |𝑆|

commitment

Merkle tree (Merkle 1989)

𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚7𝑚6 𝑚8

list of values S

ℎ

H H H H

H H

H

To prove 𝑆 4 = 𝑚4 ,

proof π = 𝑚3, 𝑦1, 𝑦6

𝑦1 𝑦2 𝑦3 𝑦4

𝑦5 𝑦6

Bob does:

𝑦2 ⇽ 𝐻(𝑚3, 𝑚4)
𝑦5 ⇽ 𝐻(𝑦1, 𝑦2)
ℎ’ ⇽ 𝐻(𝑦5, 𝑦6)
accept if ℎ = ℎ’

commitment

Merkle tree (Merkle 1989)

Thm: H CRHF ⇒ adv. cannot find (𝑆, 𝑖,𝑚, 𝜋) s.t. 𝑚 ≠ 𝑆[𝑖] and

verify(ℎ, 𝑖,𝑚, 𝜋) = accept where ℎ = commit(𝑆)

(to prove, prove the contra-positive)

How is this useful?

• When writing a block of transactions 𝑆 to the blockchain,
suffices to write commit(𝑆) to chain. Keep chain small.

• Later, can prove contents of every Tx.

Super useful. Example

Merkle
tree

Tx1 Tx2 … Txn

Merkle
tree

Tx1 Tx2 … Txn

Merkle
tree

Tx1 Tx2 … Txn

Abstract block chain

blockchain

block header

⊥
Merkle

root

other

data

block header

hash
Merkle

root

other

data

block header

hash
Merkle

root

other

data

Merkle proofs are used to prove that a Tx is “on the block chain”

Another application: proof of work

Goal: computational problem that

• takes time Ω(𝐷) to solve, but (D is called the difficulty)

• solution takes time O(1) to verify

How? 𝐻:𝑋 × 𝑌 ⇾ {0,1,2,… , 2𝑛 − 1} e.g. 𝑛 = 256

• puzzle: input 𝑥 ∈ 𝑋, output 𝑦 ∈ 𝑌 s.t. 𝐻(𝑥, 𝑦) < 2𝑛/𝐷

• verify(𝑥, 𝑦): accept if 𝐻(𝑥, 𝑦) < 2𝑛/𝐷

Another application: proof of work

Thm: if H is a “random function” then the best algorithm
requires 𝐷 evaluations of 𝐻 in expectation.

Note: this is a parallel algorithm

⇒ the more machines I have, the faster I solve the puzzle.

Bitcoin uses 𝐻(𝑥) = SHA256(SHA256(𝑥))

Cryptography background:
Digital Signatures

数字签名

如何验证交易

Signatures
Physical signatures: bind transaction to author

Bob agrees to pay Alice 1$

Bob agrees to pay Alice 100$

Problem in the digital world:

anyone can copy Bob’s signature from one doc to another

Digital signatures
Solution: make signature depend on document

Bob agrees to pay Alice 1$

secret signing
key (sk)

signing
algorithm

signature

Signer

verifier

Verifier

public verification
key (pk)

‘accept’
or

‘reject’

Digital signatures: syntax

Def: a signature scheme is a triple of algorithms:

• Gen(): outputs a key pair (pk, sk)

• Sign(sk, msg) outputs sig. σ

• Verify(pk, msg, σ) outputs ‘accept’ or ‘reject’

Secure signatures: (informal)

Adversary who sees signatures on many messages of his choice,
cannot forge a signature on a new message.

Families of signature schemes

1. RSA signatures (old … not used in blockchains):

• long sigs and public keys (≥256 bytes), fast to verify

2. Discrete-log signatures: Schnorr and ECDSA

• short sigs (48 or 64 bytes) and public key (32 bytes)

3. BLS signatures: 48 bytes, aggregatable, easy threshold

4. Post-quantum signatures: long (≥768 bytes)

(Ethereum 2.0, Chia, Dfinity)

(Bitcoin, Ethereum)

Signatures on the blockchain

Signatures are used everywhere:

• ensure Tx authorization,

• governance votes,

• consensus protocol votes.

verify
Tx

verify
Tx

verify
Tx

data signatures

data signatures

sk1

sk2

Next lecture: the Bitcoin blockchain

END OF LECTURE

