Spring 2022

XBRGERA

Blockchain Technologies

RIS &
Intro to cryptography

What is a blockchain?

Abstract answer: a blockchain provides
e coordination between many parties,
 when there is no single trusted party

if trusted party exists = no need for a blockchain

[financial systems: often no trusted party]

What is all the excitement about?

(1) Basic application: a digital currency (stored value)
e Current largest: Bitcoin (2009), Ethereum (2015)
* Global: accessible to anyone with an Internet connection

Che New Jork Eimes

Biicgin Has Saved My Family

“Borderless money” is more than a buzzword when you live in a
collapsing economy and a collapsing dictatorship.

By Carlos Hernandez

Mr. Hernandez is a Venezuelan economist.

Feb. 23, 2019 f v = -

What is all the excitement about?

(1) Basic application: a digital currency (stored value)
 Current largest: Bitcoin (2009), Ethereum (2015)
* Global: accessible to anyone with an Internet connection

(2) Beyond stored value: decentralized applications (DAPPs)

 DeFi: financial applications managed by public programs
 examples: stablecoins, lending, exchanges,

 Asset management (e.g., art, domain names, games).

 Decentralized organizations (DAOs)
DAOs for %5, 1BIE., 28N UK. ..

(3) New programming model: writing decentralized programs

Transaction volume

24h Volume (Sep, 2020)
Bitcoin $70,163,302,153
¢ Ethereum $62,307,903,847
& Tether $52,715,790,830

& XRP $1,724,384,881

Central Bank Digital Currency (CBDC)

What is a blockchain?

Layer 3: user facing tools (cloud servers)

Layer 2: applications (DAPPs, smart contracts)

Layer 1.5: compute layer (blockchain computer)

Layer 1. m_

A public append-only data structure:

Consensus layer (informai)

achieved by replication

-

Persistence: once added, data can never be removed*
Consensus: all honest participants have the same data**
Liveness: honest participants can add new transactions

Open(?): anyone can add data (no authentication)

Layer 1. _m_

How are blocks added to chain?

blockchain

skA‘!:? i

verify

block

How are blocks added to chain?

blockchain
] ann

| am the
leader

Why is consensus a hard problem?

Tx2

(& \f: »
i

@ . Tx4

» o
Tx1, Tx2, Tx3, Tx4

Why is consensus a hard problem?

Problems:
 Network delay
* Network partition

Tx2

viv! . x4
\ : . A)
. (@]
Q

“0
W Tx1, Tx2, Tx3, Tx4

Why is consensus a hard problem?

Tx1
Problems: Q
e crash
e malice I
™2 x4

(& _‘f: =
-

o ‘ e
(@] o 0

Q
w Tx1, Tx2, Tx4

Layer 1.5: The blockchain computer

DAPP logic is encoded in a program that runs on blockchain

* Rules are enforced by a public program (public source code)

= transparency: no single trusted 3" party

* The DAPP program is executed by parties who create new blocks

= public verifiability: everyone can verify state transitions

Layer 1.5: compute layer
Layer 1: —ﬂmu—

Layer 2: Decentralized applications (DAPPS)

Runon |
blockchain @ S O)&/ o O
computer
Layer 2: applications (DAPPs, smart contracts)

Layer 1.5: blockchain computer

Layer 1. onsensus layer

Layer 3: Common DAPP architecture

L —&

end user

Layer 3: user facing servers

DAPP DAPP (layer 2)

on-chain .
state blockchain computer (layer 1.5)

consensus layer

(layer 1)

Ethereum’s DeFi

°TH!
BLOCK
— Payments ——— |nfrastructure - KYC & ldentity Stablecoins — Insurance
;;gg;;;;j‘ & b4 Bxcert OSELFKEY B | \,érETHERlSE
00 X @ GITCOIN Auport Nexus ofe Mutual
Protocol wdutchX ‘Ethlance CC""C.- Bloom /| “ceMNi s || cagl o
o = Bty 2™ || iXledger
Dai Card Q\ ox ¥ FOAM ?93’99??" M ":;:S“"es %- e || GO VouchForMe
Exchanges & Liquidity STAN ai
(YW g ap)| EXPC LIMPA || & gang
X xDai Chain | (Centrifuge €S AIRSW T) TrueUsD J
-w. - Delta @ Lenoroip| | C canson Lc,ed.tmnd.n;\‘
POIDEX 3§ slow.trade m%m 5v /5x % DAXIA ;":"“’e (4} LENDROID
‘ @ W TOTLE hydro & oovmine o (9 Terra) c
% Bancor @ Ren @be vAGIASS /\mplclunl vee
& 4
. Investing o\ ~Marketplaces Pred:ctlon Markels .m
- = . Set SWARM * 0.) \
=3 VHON " || RareBits | §c. @augur
AarqentOwsv B _HARBOR t; FETCH o . nijo
8 [P HELONPORT W (@ districtox| @ Bodhi Marbl?mmpp
e ¥ Brickblock SPICE bskt ™eri0io ORIGIN [Ox - »SALY
\éBalcance _ BET@KEN ‘ SLICE e ‘V' B » BLOQBOARD
MyCrypto . SCIENCE T ="* COLEND'
\ ..-.¥~ " [source: the Block Genesis] - a~\ o

lots of experiments ...

DEFI

PULSE Name Chain Category Locked (USD) ¥
E A Aave Ethereum Lending $1.498
© 2. Maker Ethereum Lending $1.268B
& 3 Curve Finance Ethereum DEXes $1.00B
4. yearn.finance Ethereum Assets $785.8M
5% Synthetix Ethereum Derivatives $769.4M
6. Compound Ethereum Lending $626.5M
7 WBTC Ethereum Assets $570.7M
8. Uniswap Ethereum DEXes $564.5M

This course

Cryptography Distributed systems

Economics

SRR S i

Course organization

The starting point: Bitcoin mechanics
Consensus protocols

Ethereum and decentralized applications
Economics of decentralized applications
Scaling the blockchain: 10K Tx/sec and more

Private transactions on a public blockchain
(SNARKs and zero knowledge proofs)

S5 H 2 /ETE : bridges and wrapped coins

Let’s get started ...

BRERHR A, FREIHK!

Cryptography Background

(1) cryptographic hash functions

An efficiently computable function H: M — T
where |M| > |T|
32 bytes

— r - oese

Collision resistance($ifillifE)

Def: acollisionfor H:M — T ispair x # y € M s.t.

|[M| > |T| implies that many collisions exist

H(x) = H(y)

Def: afunction H: M — T is collision resistant if it is “hard” to find
even a single collision for H (we say H is a CRHF)

Example: SHA256: {x :len(x)<26 bytes} — {0,1}2%¢

An application: committing to data(zi%)

Alice has a large file m. She publishes h = H(m) (32 bytes)
Bob has h. Laterhelearns m’ st. H(m') =h

HicaCRHE —= Rnhiceconvinced that m’ — m
y o § T/ A A2 Y I N | 4 =’ W N T Ww\WITI VIS A Wi T AL rr v 1r1rv

(otherwise, m and m’ are a collision for H)

We say that h = H (i) is a binding commitment (485 t%)to m

(note: not hiding, h may leak information about m)

(FREMEAER, ~EZMENE, WR—1TEZRHE, HVWESZEER)

Committing tO d IiSt (of transactions)

32 bytes

[

Goal: /

- Alice publishes a short binding commitment to S, h = commit(5)

Alice has S = (m,,m,,...,m,)

- Bobhash. Given (m; proofm;) cancheckthat S[i] =mi

Bob runs verify(h, i, m, ;) = accept/reject

security: adv. cannot find (S,i,m,m) st. m # S[i] and

verify(h,i,m,m) = accept where h = commit(S)

Committing to a list

method 1: commit(S)=h = H(H(m,), ..., H(m,))

Later: given h, m, and ‘H(mz),) H(mn)’ Bob can check S[1] =m,

!
proof 1,

Problem: long proof! (n — 1) hash values

Better method: Merkle tree. Proof length =1log,n hash values

Merkle tree (Merkle 1989)

commitment |—— Goal:
e committolistS
* Later prove S[i] =mi

Merkle tree
commitment

m; m, m; my Mg Mg My Mg

\)
!

list of values S

Merkle tree (Merkle 1989)

commitment —— Goal:
e committolistS
Vs * Later prove S|i] =mi

Y1 To prove S[4] = m, ,
b d prOOfT[— (m3!y1'y6)
[\ /‘ \

m, m,|m m5 m6 m m8

length of : log, |S]|

I
list of values S

Merkle tree (Merkle 1989)

commitment —— To prove S[4] = m, ,

proof T = (m3, Y4, V)

Vs
y Bob does:
1
0 d o)
)’5 — Hy,y,)
r/; ,\n f \ m h' «— H(ys Ys)
1 My 5 me my m8
l acceptif h=~n

I
list of values S

Merkle tree (Merkle 1989)

Thm: HCRHF = adv. cannotfind (S,i,m,m) s.t. m # S[i] and

verify(h,i,m,m) = accept where h = commit(S)

(to prove, prove the contra-positive)

How is this useful? Super useful. Example

* When writing a block of transactions S to the blockchain,
suffices to write commit(S) to chain. Keep chain small.

* Later, can prove contents of every Tx.

Abstract block chain

blockchain
block header 7~ ‘ block header / v block header

Merkle
tree

Merkle
tree

Merkle
tree

TX;, TX, .. TXy TX; TX, ... Txy X X o TXy

Merkle proofs are used to prove that a Tx is “on the block chain”

Another application: proof of work

Goal: computational problem that

* takes time (D) to solve, but (D is called the difficulty)

e solution takes time O(1) to verify

How? H:X X Y —={0,1,2,..,2"—1} eg n =256

* puzzle: input x € X, output y€Y st. H(x,y) <2"/D

* verify(x, y):

accept if

H(x,y) <2"/D

Another application: proof of work

Thm: if Hisa “random function” then the best algorithm
requires D evaluations of H in expectation.

Note: this is a parallel algorithm
= the more machines | have, the faster | solve the puzzle.

Bitcoinuses H(x) = SHA256(SHA256(x))

Cryptography background:

Digital Signatures

RFEL

INREGUERR 5

Physical signatures: bind transaction to author

—
0o —

Bob agrees to pay Alice 1%

.d".l_'}
s
l : o

Bob agrees to pay Alice 100$_

o

Problem in the digital world:

anyone can copy Bob’s signature from one doc to another

Digital signatures

Solution: make signature depend on document

Signer
. — = Verifier
1 . ¢ ,
Bob agrees to pay Alice 15 accept
> ———) ~ —_— OF
‘reject’

l signature

I

(= —()

secret signing algorithm public verification

key (sk) key (pk)

Digital signatures: syntax

Def: asignature scheme is a triple of algorithms:
* Gen(): outputs a key pair (pk, sk)
* Sign(sk, msg) outputssig. o

* Verify(pk, msg, o) outputs ‘accept’ or ‘reject’

Secure signatures: (informal)

Adversary who sees signatures on many messages of his choice,
cannot forge a signature on a new message.

Families of signature schemes

RSA signatures (old ... not used in blockchains):

* long sigs and public keys (2256 bytes), fast to verify

Discrete-log signatures: Schnorr and ECDSA (Bitcoin, Ethereum)
* short sigs (48 or 64 bytes) and public key (32 bytes)

BLS signatures: 48 bytes, aggregatable, easy threshold
(Ethereum 2.0, Chia, Dfinity)

Post-quantum signatures: long (>768 bytes)

Signatures on the blockchain

Signatures are used everywhere:

* ensure Tx authorization,
e governance votes,
e consensus protocol votes.

data | signatures

sk,

sk2 a data | signatures

END OF LECTURE

Next lecture: the Bitcoin blockchain

