Operciiz’ng
- Systems:

Internczl; &

and

Design -

Principles

Chapter 13
Embedded Operating
Systems

Eighth Edition
By William Stallings

. Embedde System

m Refers to the use of electronics and software within a product that 1s
designed to perform a dedicated function

®m 1n many cases, embedded systems are part of a larger system or
product

m antilock braking system in a car would be an example

i Software : Auxiliary
——— e een e ! Systems
FPGA/ Memory (power,
ASIC I cooling)
Human «——>»| Processor ——————>» Diagnostic
interface port
A/D D/A
conversion Conversion
Electromechanical
backup and safety
Sensors Actuators

External

environment

Figure 13.1 Possible Organization of an Embedded System

~ Characteristics of
Ernbedded oS

Real-time operation

Reactive operation

Configurability

I/0 device flexibility

Streamlined protection mechanisms

Direct use of interrupts

A

) 74

Developing an Embedded OS

Two general approaches:

* take an existing OS and adapt it for the
embedded application

» design and implement an OS i1ntended
solely for embedded use

Adapting an Existing OS

m An existing commercial OS can be used for an embedded system by
adding:
m real time capability
m streamlining operation

m adding necessary functionality

Advantage:

e familiar interface

Disadvantage:

 not optimized for real-time
and embedded applications

Purpose-Built Embedded OS

m Typical characteristics include:

m fast and lightweight process or thread switch

m scheduling policy is real time and dispatcher module is part of scheduler
m small size

m responds to external interrupts quickly

®m minimizes intervals during which interrupts are disabled

m provides fixed or variable-sized partitions for memory management

m provides special sequential files that can accumulate data at a fast rate

Two examples are:

* eCos
* TinyOS

To deal with timing

constraints, the kernel:

Tlmlng . provid;s bqunded
C()nstr alnts execution time for

primitives
e maintains a real-time clock

» provides for special alarms
and timeouts

e supports real-time queuing
disciplines

 provides primitives to
delay processing by a fixed
amount of time and to
suspend/resume execution

 Embedded Linux

m A version of Linux running in an embedded system

m Embedded devices typically require support for a specific set of
devices, periphrals, and protocols, depending on the hardware that
1s present in a given device and the intended purpose of that device

B An embedded Linux distribution 1s a version of Linux to be
customized for the size and hardware constraints of embedded
devices

m includes software packages that support a variety of services and
applications on those devices

m an embedded Linux kernel will be far smaller than an ordinary
Linux kernel

Cross Compiler

m A key differentiator between desktop/server and embedded Linux
distributions 1s that desktop and server software is typically
compiled on the platform where it will execute

m Embedded Linux distributions are usually compiled on one
platform but are intended to be executed on another

m the software used for this purpose is referred to as a cross-compiler

Embedded Linux F1le
Systems

m File system must be as small as possible

m Commonly used examples:
m cramfs

m a simple read-only file system that is designed to minimize size by
maximizing the efficient use of underlying storage

m files are compressed in units that match the Linux page size
m squashfs

m a compressed, read-only file system that was designed for use on low
memory or limited storage size environments

mffs2

m alog-based file system that is designed for use on NOR and NAND flash
devices with special attention to flash-oriented issues such as wear-leveling

m ubifs

m provides better performance on larger flash devices and also supports write
caching to provide additional performance inprovements

m yaffs2
m provides a fast and robust file system for large flash devices

Advantages of
Embedded Linux

m Advantages of using Linux as the basis for an embedded OS
include the following:

m vendor independence

m the platform provider is not dependent on a particular vendor to
provide needed features and meet deadlines for deployment

m varied hardware support

m Linux support for a wide range of processor architectures and
peripheral devices makes it suitable for virtually any embedded
system

m low cost
m the use of Linux minimizes cost for development and training
m Open source

m the use of Linux provides all of the advantages of open source
software

Android

m Focus of Android lies 1in the
vertical integration of the
Linux kernel and the Android
user-space components

m Many embedded Linux
developers do not consider

Android to be an instance of
embedded Linux

m from the point of view of these
developers, a classic embedded
device has a fixed function,
frozen at the factory

an embedded OS based on a Linux
kernel

more of a platform OS that can
support a variety of applications that
vary from one platform to the next

a vertically integrated system,
including some Android specific
modification to the Linux kernel

N

TinyOS

Streamlines to a very minimal OS for embedded systems

Core OS requires 400 bytes of code and data memory combined
Not a real-time OS

There is no kernel

There are no processes

OS doesn’t have a memory allocation system

Interrupt and exception handling is dependent on the peripheral

It 1s completely nonblocking, so there are few explicit synchronization
primitives

Has become a popular approach to implementing wireless sensor network
software

Wired link

------ Wireless link

éi% e >
v \
' . .* Sensor o7

o’ -
o, Sensor s) and relay .
b4)
- i3 DS
= Base', - ~=-- £° \\
. A Y - A Y
station =
Host PC K Sensor "~--___% =,
Y s - - -
\ and relay » Sensor

A Sensor
b and relay
- - . A
Sensor AT NL g
-
and relay 3

Sensor

Figure 13.2 Typical Wireless Sensor Network Topology

TinyOS Goals

m With the tiny distributed sensor application in mind, the following

goals were set for TinyOS:

[|
oln >
[|
W .
[|
[|

allow high concurrency

operate with limited resources

adapt to hardware evolution

support a wide range of applications
support a diverse set of platforms

be robust

m Embedded software systems built
with TinyOS consist of a set of
modules (called components),
each of which performs a simple

TinyOS Components

Examples of standardized
components include:
each other and with hardware in

limited and well-defined ways * single-hop networking
m The only other software module ad-hoc routing
is the scheduler * power management
timers
nonvolatile storage control

m Because there is no kernel there is
no actual OS

m The application area of interest is
the wireless sensor network
(WSN)

h 4 YVYA

module TimerM {

StdControl ‘ Timer |
provides {

TimerM interface StdControl;

interface Timer;
Clock }

uses interface Clock as Clk;

(a) TimerM component

.
b
3

m A software component implements one or more tasks

m Each fask in a component 1s similar to a thread in an ordinary OS

m Within a component tasks are atomic

m once a task has started it runs to completion

* be preempted by another
task in the same
component and there is
no time slicing

* block or spin wait

perform computations

call lower-level
components (commands)

signal higher-level events
schedule other tasks

Components -- Commands

m A command 1s a nonblocking request

m a task that issues a command does not block or spin wait for a reply
from the lower-level component

m [s typically a request for the lower-level component to perform some
service

m The effect on the component that receives the command 1s specific to
the command given and the task required to satisfy the command

m A command cannot preempt the currently running task

m A command does not cause a preemption in the called component
and does not cause blocking in the calling component

Components -- Events

m Events in TinyOS may be tied either directly or indirectly to hardware
events

m [owest-level software components interface directly to hardware
interrupts

m may be external interrupts, timer events, or counter events

m An event handler in a lowest-level component may handle the
interrupt itself or may propagate event messages up through the
component hierarchy

m A command can post a task that will signal an event in the future

m in this case there is no tie of any kind to a hardware event

A 4

YVA

StdControl

Timer

StdControl

Timer

TimerM

Clock

Clock

HWClock

(b) TimerC configuration

configuration TimerC {
provides {
interface StdControl;
interface Timer;

implementation {
components TimerM, HWClock;
StdControl = TimerM.StdControl;
Timer = TimerM.Timer;
TimerM.Clk -> HWClock.Clock;

Figure 13.3 Example Component and Configuration

- TinyOS Scheduler

Operates across all components

Only one task executes at a time

The scheduler 1s a separate component
m it is the one portion of TinyOS that must be present in any system

Default scheduler 1s a simple FIFO queue

Scheduler 1s power aware

m puts processor to sleep when there is no task in the queue

ReceiveMsg

(a) Simplified view of the Surge Application

StdControl |

Main | SurgeM

StdControl

StdControl ADC StdControl Timer StdControl SndMsg LEDs

Photo TimerC Multihop LEDsC

(b) Top-level Surge Configuration

LED = light-emitting diode
ADC = analog-to-digital converter

Figure 13.4 Example TinyOS Application

TinyOS Resource Interface

m TinyOS provides a simple but powerful set of conventions for dealing
with resources

Dedicated

* a resource that a subsystem needs exclusive access to at all times
* no sharing policy 1s needed
» examples include interrupts and counters

Virtualized

* every client of a virtualized resource interacts with it as if it were a dedicated resource
 an example is a clock or timer

Shared

« abstraction that provides access to a dedicated resource through an arbiter component
» arbiter determines which client has access to the resource at which time

A 4 YVvA A YA

Resource Resource | Resource-specific
Resource R :
equested Configure interfaces
- R
1 1
1]
1]
1 1
1]
1]
1 1
- :
1 ;
1 Resource-specific i
: interfaces :
i
: Shared Resource i
1]
1 Arbiter Resource-specific i
: Info interfaces :
1]
] i
1 i
1 i
1]
1]
1]
] i
: ;
: Resource Resource Arbiter Resource-specific i
Resource > i
: Requested Configure Info interfaces :
! Arbiter Dedicated Resource| |
1 i
1 1
'

e e e e E e m m e m m mmomomomm o m

Figure 13.5 Shared Resource Configuration

- Summary

m Embedded systems

m Characteristics of embedded
operating systems

Adapting an existing
commercial operating system

Purpose-built embedded
operating system

Embedded Linux

Kernel size
Compilation
Embedded Linux file systems

Advantages of embedded
Linux

Android

= TinyOS

Wireless sensor networks
TinyOS goals
TinyOS components

TinyOS scheduler
TinyOS resource interface

