
Chapter 13

Embedded Operating

Systems
Eighth Edition

By William Stallings

Operating

Systems:

Internals

and

Design

Principles

Embedded System

 Refers to the use of electronics and software within a product that is

designed to perform a dedicated function

 in many cases, embedded systems are part of a larger system or

product

 antilock braking system in a car would be an example

Auxiliary

Systems

(power,

cooling)

MemoryFPGA/

ASIC

Human

interface

Diagnostic

port

D/A

Conversion
A/D

conversion
Electromechanical

backup and safety

Sensors Actuators

Processor

Software

External

environment

Figure 13.1 Possible Organization of an Embedded System

Characteristics of
Embedded OS

 Real-time operation

 Reactive operation

 Configurability

 I/O device flexibility

 Streamlined protection mechanisms

 Direct use of interrupts

Developing an Embedded OS

Two general approaches:

• take an existing OS and adapt it for the
embedded application

• design and implement an OS intended
solely for embedded use

Adapting an Existing OS

 An existing commercial OS can be used for an embedded system by

adding:

 real time capability

 streamlining operation

 adding necessary functionality

Advantage:

• familiar interface

Disadvantage:

• not optimized for real-time
and embedded applications

Purpose-Built Embedded OS

 Typical characteristics include:

 fast and lightweight process or thread switch

 scheduling policy is real time and dispatcher module is part of scheduler

 small size

 responds to external interrupts quickly

 minimizes intervals during which interrupts are disabled

 provides fixed or variable-sized partitions for memory management

 provides special sequential files that can accumulate data at a fast rate

Two examples are:

• eCos

• TinyOS

Timing
Constraints

To deal with timing
constraints, the kernel:

• provides bounded
execution time for
primitives

• maintains a real-time clock

• provides for special alarms
and timeouts

• supports real-time queuing
disciplines

• provides primitives to
delay processing by a fixed
amount of time and to
suspend/resume execution

Embedded Linux

 A version of Linux running in an embedded system

 Embedded devices typically require support for a specific set of

devices, periphrals, and protocols, depending on the hardware that

is present in a given device and the intended purpose of that device

 An embedded Linux distribution is a version of Linux to be

customized for the size and hardware constraints of embedded

devices

 includes software packages that support a variety of services and

applications on those devices

 an embedded Linux kernel will be far smaller than an ordinary

Linux kernel

Cross Compiler

 A key differentiator between desktop/server and embedded Linux

distributions is that desktop and server software is typically

compiled on the platform where it will execute

 Embedded Linux distributions are usually compiled on one

platform but are intended to be executed on another

 the software used for this purpose is referred to as a cross-compiler

Embedded Linux File
Systems

 File system must be as small as possible

 Commonly used examples:

 cramfs

 a simple read-only file system that is designed to minimize size by
maximizing the efficient use of underlying storage

 files are compressed in units that match the Linux page size

 squashfs

 a compressed, read-only file system that was designed for use on low
memory or limited storage size environments

 jffs2

 a log-based file system that is designed for use on NOR and NAND flash
devices with special attention to flash-oriented issues such as wear-leveling

 ubifs

 provides better performance on larger flash devices and also supports write
caching to provide additional performance inprovements

 yaffs2

 provides a fast and robust file system for large flash devices

Advantages of
Embedded Linux

 Advantages of using Linux as the basis for an embedded OS
include the following:

 vendor independence

 the platform provider is not dependent on a particular vendor to
provide needed features and meet deadlines for deployment

 varied hardware support

 Linux support for a wide range of processor architectures and
peripheral devices makes it suitable for virtually any embedded
system

 low cost

 the use of Linux minimizes cost for development and training

 open source

 the use of Linux provides all of the advantages of open source
software

Android

 Focus of Android lies in the
vertical integration of the
Linux kernel and the Android
user-space components

 Many embedded Linux
developers do not consider
Android to be an instance of
embedded Linux

 from the point of view of these
developers, a classic embedded
device has a fixed function,
frozen at the factory

Android
an embedded OS based on a Linux

kernel

more of a platform OS that can
support a variety of applications that
vary from one platform to the next

a vertically integrated system,
including some Android specific
modification to the Linux kernel

TinyOS
 Streamlines to a very minimal OS for embedded systems

 Core OS requires 400 bytes of code and data memory combined

 Not a real-time OS

 There is no kernel

 There are no processes

 OS doesn’t have a memory allocation system

 Interrupt and exception handling is dependent on the peripheral

 It is completely nonblocking, so there are few explicit synchronization
primitives

 Has become a popular approach to implementing wireless sensor network
software

Internet

Figure 13.2 Typical Wireless Sensor Network Topology

Host PC

Base

station

Sensor

and relay

Sensor

and relay

Sensor

and relay

Sensor

and relay

Sensor

Sensor

Wired link

Wireless link

Sensor

TinyOS Goals

 With the tiny distributed sensor application in mind, the following

goals were set for TinyOS:

 allow high concurrency

 operate with limited resources

 adapt to hardware evolution

 support a wide range of applications

 support a diverse set of platforms

 be robust

TinyOS Components

 Embedded software systems built
with TinyOS consist of a set of
modules (called components),
each of which performs a simple
task and which interface with
each other and with hardware in
limited and well-defined ways

 The only other software module
is the scheduler

 Because there is no kernel there is
no actual OS

 The application area of interest is
the wireless sensor network
(WSN)

Examples of standardized
components include:

• single-hop networking

• ad-hoc routing

• power management

• timers

• nonvolatile storage control

(a) TimerM component

(b) TimerC configuration

Figure 13.3 Example Component and Configuration

TimerM

StdControl

Clock

Timer

TimerM

StdControl

Clock

Clock

HWClock

Timer

StdControl Timer

module TimerM {

 provides {

 interface StdControl;

 interface Timer;

 }

 uses interface Clock as Clk;

} ...

configuration TimerC {

 provides {

 interface StdControl;

 interface Timer;

 }

}

implementation {

 components TimerM, HWClock;

 StdControl = TimerM.StdControl;

 Timer = TimerM.Timer;

 TimerM.Clk -> HWClock.Clock;

}

Components -- Tasks

 A software component implements one or more tasks

 Each task in a component is similar to a thread in an ordinary OS

 Within a component tasks are atomic

 once a task has started it runs to completion

A task cannot:

• be preempted by another
task in the same
component and there is
no time slicing

• block or spin wait

A task can:

• perform computations

• call lower-level
components (commands)

• signal higher-level events

• schedule other tasks

Components -- Commands

 A command is a nonblocking request

 a task that issues a command does not block or spin wait for a reply

from the lower-level component

 Is typically a request for the lower-level component to perform some

service

 The effect on the component that receives the command is specific to

the command given and the task required to satisfy the command

 A command cannot preempt the currently running task

 A command does not cause a preemption in the called component

and does not cause blocking in the calling component

Components -- Events

 Events in TinyOS may be tied either directly or indirectly to hardware

events

 Lowest-level software components interface directly to hardware

interrupts

 may be external interrupts, timer events, or counter events

 An event handler in a lowest-level component may handle the

interrupt itself or may propagate event messages up through the

component hierarchy

 A command can post a task that will signal an event in the future

 in this case there is no tie of any kind to a hardware event

(a) TimerM component

(b) TimerC configuration

Figure 13.3 Example Component and Configuration

TimerM

StdControl

Clock

Timer

TimerM

StdControl

Clock

Clock

HWClock

Timer

StdControl Timer

module TimerM {

 provides {

 interface StdControl;

 interface Timer;

 }

 uses interface Clock as Clk;

} ...

configuration TimerC {

 provides {

 interface StdControl;

 interface Timer;

 }

}

implementation {

 components TimerM, HWClock;

 StdControl = TimerM.StdControl;

 Timer = TimerM.Timer;

 TimerM.Clk -> HWClock.Clock;

}

TinyOS Scheduler

 Operates across all components

 Only one task executes at a time

 The scheduler is a separate component

 it is the one portion of TinyOS that must be present in any system

 Default scheduler is a simple FIFO queue

 Scheduler is power aware

 puts processor to sleep when there is no task in the queue

Photo

HWClock

Queuedsend

GenericComm

Timer
Multihop

LEDs

SurgeM

(a) Simplified view of the Surge Application

(b) Top-level Surge Configuration

LED = light-emitting diode

ADC = analog-to-digital converter

Figure 13.4 Example TinyOS Application

Timer SendMsg

SendMsgClock

Main

Photo TimerC Multihop LEDsC

SurgeM

StdControl

StdControl StdControl StdControlADC Timer SndMsg LEDs

ADC Timer SndMsg LEDs

StdControl

ReceiveMsg

LEDs ADC

TinyOS Resource Interface

 TinyOS provides a simple but powerful set of conventions for dealing

with resources

Dedicated

• a resource that a subsystem needs exclusive access to at all times

• no sharing policy is needed

• examples include interrupts and counters

Virtualized

• every client of a virtualized resource interacts with it as if it were a dedicated resource

• an example is a clock or timer

Shared

• abstraction that provides access to a dedicated resource through an arbiter component

• arbiter determines which client has access to the resource at which time

Figure 13.5 Shared Resource Configuration

Arbiter

Resource
Resource

Requested

Resource
Resource

Requested

Resource-specific

interfaces

Resource-specific

interfaces

Resource-specific

interfaces

Resource

Configure

Resource

Configure

Arbiter

Info

Arbiter

Info

Shared Resource

Resource-specific

interfaces

Dedicated Resource

Summary
 Embedded systems

 Characteristics of embedded
operating systems

 Adapting an existing
commercial operating system

 Purpose-built embedded
operating system

 Embedded Linux

 Kernel size

 Compilation

 Embedded Linux file systems

 Advantages of embedded
Linux

 Android

 TinyOS

 Wireless sensor networks

 TinyOS goals

 TinyOS components

 TinyOS scheduler

 TinyOS resource interface

