EE382N-4 Embedded Systems Architecture

The ARM Instruction Set Architecture

Mark McDermott
With help from our good friends at ARM

Fall 2008

ERED

=

W P!

ARM

8/22/2008

EE382N-4 Embedded Systems Architecture

Main features of the ARM Instruction Set

All instructions are 32 bits long.
Most instructions execute in a single cycle.

Most instructions can be conditionally executed.

A load/store architecture
Data processing instructions act only on registers
Three operand format
Combined ALU and shifter for high speed bit manipulation
Specific memory access instructions with powerful auto-indexing addressing
modes.

32 bit and 8 bit data types
and also 16 bit data types on ARM Architecture v4.
Flexible multiple register load and store instructions

Instruction set extension via coprocessors
Very dense 16-bit compressed instruction set (Thumb)

POWERED

ARMa

8/22/2008 2

EE382N-4 Embedded Systems Architecture

Coprocessors

Up to 16 coprocessors can be defined

Expands the ARM instruction set

Each coprocessor can have up to 16 private registers of any reasonable size
Load-store architecture

EE382N-4 Embedded Systems Architecture

Thumb is a 16-bit instruction set
Optimized for code density from C code
Improved performance form narrow memory
Subset of the functionality of the ARM instruction set

Core has two execution states — ARM and Thumb
Switch between them using BX instruction

Thumb has characteristic features:
Most Thumb instruction are executed unconditionally
Many Thumb data process instruction use a 2-address format
Thumb instruction formats are less regular than ARM instruction formats, as

a result of the dense encoding.

EE382N-4 Embedded Systems Architecture

Processor Modes

The ARM has six operating modes:
User (unprivileged mode under which most tasks run)

FIQ (entered when a high priority (fast) interrupt is raised)

IRQ (entered when a low priority (normal) interrupt is raised)

Supervisor (entered on reset and when a Software Interrupt instruction is
executed)

Abort (used to handle memory access violations)

Undef (used to handle undefined instructions)

ARM Architecture Version 4 adds a seventh mode:
System (privileged mode using the same registers as user mode)

POWERED

ARMa

8/22/2008 5

EE382N-4 Embedded Systems Architecture

The Registers

ARM has 37 registers in total, all of which are 32-bits long.
1 dedicated program counter
1 dedicated current program status register
5 dedicated saved program status registers
30 general purpose registers

However these are arranged into several banks, with the
accessible bank being governed by the processor mode. Each

mode can access
a particular set of r0-r12 registers
a particular r13 (the stack pointer) and r14 (link register)
r15 (the program counter)
cpsr (the current program status register)

And privileged modes can also access
a particular spsr (saved program status register)

POWERED

ARMa

8/22/2008 6

EE382N-4 Embedded Systems Architecture

The ARM Register Set

Current Visible Registers

Abort Mode

Banked out Registers

User FIQ IRQ SVC Undef

ri3 (sp)
ri4 (Ir)

ri3 (sp)
ri4 (Ir)

cpsr

ARM:
8/22/2008 7

EE382N-4 Embedded Systems Architecture

Register Organization Summary

User FIQ IRQ SvC Undef Abort

ro

ri

r2

r3

r4

rs

ré

rv

r8

ro

rio

ril

ri2
ri3 (sp)
ri4 (Ir)
r15 (pc)

Thumb state
Low registers

r8

ro

rio

ril

ri2
ri3 (sp) ri3 (sp)
ri4 (Ir) ri4 (Ir)

Thumb state
High registers

ri3 (sp)
ri14 (Ir)

1 ()

ri4 (Ir)

Spsr Spsr Spsr spsr

Note: System mode uses the User mode register set

ARM

n W POWERED

8/22/2008

|

EE382N-4 Embedded Systems Architecture

Accessing Registers using ARM Instructions

No breakdown of currently accessible registers.

All instructions can access r0-r14 directly.
Most instructions also allow use of the PC.

Specific instructions to allow access to CPSR and SPSR.

Note : When in a privileged mode, it is also possible to load-store
the (banked out) user mode registers to or from memory.

=

g

=

ARMa
~

8/22/2008)

EE382N-4 Embedded Systems Architecture

31 28 8 4 0

N| Z| C|V 1| F TI Mode

aZ

Copies of the ALU status flags (latched if the
instruction has the "S" bit set).

* Condition Code Flags * Interrupt Disable bits.

N = Negative result from ALU flag. I - 1, disables the IRQ.
Z = Zero result from ALU flag. F =1, disables the FIQ.
C = ALU operation Carried out

V = ALU operation oVerflowed * TBit (Architecture vaT only)

T =0, Processor in ARM state

* Mode Bits T =1, Processor in Thumb state

M([4:0] define the processor mode.

POWERED

8/22/2008

Condition Flags

Logical Instruction

EE382N-4 Embedded Systems Architecture

Arithmetic Instruction

Flag
Negative
(N="1')
Zero

(2="1")

Carry
(c='1)

oVerflow
(v="1)

No meaning

Result is all zeroes

After Shift operation
‘1’ was left in carry flag

No meaning

Bit 31 of the result has been set
Indicates a negative number in
signed operations

Result of operation was zero

Result was greater than 32 bits

Result was greater than 31 bits
Indicates a possible corruption of
the sign bit in signed

numbers

POWERED

8/22/2008

EE382N-4 Embedded Systems Architecture

The Program Counter (R15)

When the processor is executing in ARM state:

All instructions are 32 bits in length
All instructions must be word aligned
Therefore the PC value is stored in bits [31:2] with bits [1:0] equal to zero (as

instruction cannot be halfword or byte aligned).
R14 is used as the subroutine link register (LR) and stores the
return address when Branch with Link operations are performed,
calculated from the PC.

Thus to return from a linked branch:
MOV r15,r14

or
MOV pc,lr

ARM

8/22/2008

n W POWERED

[EEN
N

EE382N-4 Embedded Systems Architecture

Exception Handling and the Vector Table

When an exception occurs, the core:
Copies CPSR into SPSR_<mode>

Sets appropriate CPSR bits
If core implements ARM Architecture 4T and is

currently in Thumb state, then
ARM state is entered.

Mode field bits
Interrupt disable flags if appropriate.

Maps in appropriate banked registers
Stores the “return address” in LR_<mode>
Sets PC to vector address

To return, exception handler needs to:
Restore CPSR from SPSR_<mode>
Restore PC from LR_<mode>

8/22/2008

0x00000000

0x00000004

0x00000008

0x0000000C

0x00000010

0x00000014

0x00000018

0x0000001C

Reset

Undefined Instruction

Software Interrupt

Prefetch Abort

Data Abort

Reserved

IRQ

POWERED

EE382N-4 Embedded Systems Architecture

The Original Instruction Pipeline

The ARM uses a pipeline in order to increase the speed of the

flow of instructions to the processor.
Allows several operations to be undertaken simultaneously, rather than

serially.

PC

PC

PC

1
N

I
(0 0]

FETCH

}

DECODE

EXECUTE

Instruction fetched from memory

Decoding of registers used in instruction

Register(s) read from Register Bank
Shift and ALU operation
Write register(s) back to Register Bank

Rather than pointing to the instruction being executed, the PC

points to the instruction being fetched.

POWERED

8/22/2008

Pipeline changes for ARM9TDMI

ARM7TDMI
. ARM decode
Instruction Thumb—ARM
Fetch decompress
Reg Select
FETCH DECODE
ARMOTDMI

ARM or Thumb

Instruction Inst Decode

Shift + ALU
Fetch Reg Reg

Decode Read
FETCH DECODE EXECUTE

EE382N-4 Embedded Systems Architecture

Reg . Reg
Read Shitt |ALU Write

EXECUTE

Memory
Access

MEMORY WRITE

EE382N-4 Embedded Systems Architecture

Pipeline changes for ARM10 vs. ARM11 Pipelines

ARM10
o e | ey e
::r:[tcrl:ction '[';‘;:)”dcé'on — Xg(ljtiply
FETCH ISSUE DECODE EXECUTE MEMORY WRITE
ARM11

ALU Saturate

Fetch Fetch MAC MAC MAC Write
1 Decode Issue

2 1 2 3 back

ARM Instruction Set Format

EE382N-4 Embedded Systems Architecture

Condition
Condition
Condition
Condition
Condition
Condition
Condition
Condition
Condition
Condition
Condition
Condition
Condition

Condition

8/22/2008

o O o o

o o B

= O O O

o O o o o

o O o o O o

=

o O

OPCODE
0O 0 0 A
0 1 U
1 0 B

A
0
W
B W
W
W

c C C C

0 1

o

Op-1
OP-1

0

1

OPERAND-2
Rd Rn Rs 1 0 0 1 Rm
Rd HIGH Rd LOW Rs 1 0 0 1 Rm
Rn Rd 0 000 1 0 01 Rm
Rn Rd OFFSET
Rn REGISTER LIST
Rn Rd OFFSET 1 1 S H 1 OFFSET 2
Rn Rd 0 000 1 S H 1 Rm
BRANCH OFFSET
1111111111100 01 Rn
Rn CRd CPNum OFFSET
CRn CRd CPNum OP-2 0 CRm
CRn Rd CPNum OP-2 1 CRm
SWINUMBER

Data processing
Multiply
Long Multiply
Swap
Load/Store - Byte/Word
Load/Store Multiple
Halfword Transfer Imm Off
Halfword Transfer Reg Off
Branch
Branch Exchange
COPROCESSOR DATA XFER
COPROCESSOR DATA OP
COPROCESSOR REG XFER

Software Interrupt

ARM

n W POWERED

[EEN
\l

EE382N-4 Embedded Systems Architecture

Conditional Execution

Most instruction sets only allow branches to be executed
conditionally.

However by reusing the condition evaluation hardware, ARM

effectively increases number of instructions.
All instructions contain a condition field which determines whether the CPU
will execute them.

Non-executed instructions consume 1 cycle.
Can’t collapse the instruction like a NOP. Still have to complete cycle so as to allow
fetching and decoding of the following instructions.

This removes the need for many branches, which stall the

pipeline (3 cycles to refill).
Allows very dense in-line code, without branches.
The Time penalty of not executing several conditional instructions is
frequently less than overhead of the branch
or subroutine call that would otherwise be needed.

8/22/2008

POWERED

EE382N-4 Embedded Systems Architecture

The Condition Field

Condition OPCODE

L]
—

0000 = EQ - Z set (equal)
0001 = NE - Z clear (not equal)

0010 = HS / CS - C set (unsigned higher or
same)

0011 = LO / CC - C clear (unsigned lower)
0100 = MI -N set (negative)

0101 = PL - N clear (positive or zero)
0110 = VS - V set (overflow)

0111 = VC - V clear (no overflow)

1000 = HI - C set and Z clear (unsigned
higher)

OPERAND-2 Data processing

1001 = LS - C clear or Z (set unsigned lower
or same)

1010 = GE - N set and V set, or N clear and V
clear (=or =)

1011 =LT - N set and V clear, or N clear and
V set (=)

1100 = GT - Z clear, and either N set and V
set, or N clear and V set (>)

1101 = LE - Z set, or N set and V clear,or N
clear and V set (<, or =)

1110 = AL - always
1111 = NV - reserved.

POWERED

8/22/2008

EE382N-4 Embedded Systems Architecture

Using and updating the Condition Field

To execute an instruction conditionally, simply postfix it with the appropriate

condition:
For example an add instruction takes the form:
ADD r0,r1,r2 ;r0O=rl1+r2 (ADDAL)
To execute this only if the zero flag is set:

ADDEQ rO,r1,r2 ; If zero flag set then...
;e I0=rl+1r2

By default, data processing operations do not affect the condition flags (apart
from the comparisons where this is the only effect). To cause the condition
flags to be updated, the S bit of the instruction needs to be set by postfixing
the instruction (and any condition code) with an “S”.

For example to add two numbers and set the condition flags:

ADDS rO,r1,r2 ;r0=rl+r2 P
and set flags

POWERED

8/22/2008

EE382N-4 Embedded Systems Architecture

Conditional Execution and Flags

ARM instructions can be made to execute conditionally by postfixing them with the
appropriate condition code field.
This improves code density and performance by reducing the number of forward
branch instructions.

CMP r3,#0 CMP r3,#0
BEQ skip ADDNE rO,rl1,r2
ADD ro,rl,r2

skip <

By default, data processing instructions do not affect the condition code flags but the
flags can be optionally set by using “S”. CMP does not need “S”.
loop

SUBS rl1,rl1,#1 «——| decrementrl and set flags‘
BNE loop <«

if Z flag clear then branch

POWERED

8/22/2008

EE382N-4 Embedded Systems Architecture

Branch instructions (1)

Branch : B{<cond>} label
Branch with Link : BL{<cond>} sub_routine_label
3 2 11| 1 1j1]1|1]1
BEHEEEEEEEHEEEEEEEEEEEB BB EEBERE
Condition 1 0 1 L BRANCH OFFSET
| | Link bit 0 = Branch

1 = Branch with link

Condition field

The offset for branch instructions is calculated by the assembler:
By taking the difference between the branch instruction and the target address

minus 8 (to allow for the pipeline).
This gives a 26 bit offset which is right shifted 2 bits (as the bottom two bits are

always zero as instructions are word — aligned) and stored into the instruction

encoding.
This gives a range of + 32 Mbytes.

POWERED

8/22/2008

EE382N-4 Embedded Systems Architecture

Branch instructions (2)

When executing the instruction, the processor:

shifts the offset left two bits, signh extends it to 32 bits, and adds it to PC.
Execution then continues from the new PC, once the pipeline has
been refilled.

The "Branch with link" instruction implements a subroutine call

by writing PC-4 into the LR of the current bank.
i.e. the address of the next instruction following the branch with link
(allowing for the pipeline).

To return from subroutine, simply need to restore the PC from

the LR:
MOV pg, Ir
Again, pipeline has to refill before execution continues.

=

g

=

ARMa
~

8/22/2008

EE382N-4 Embedded Systems Architecture

Branch instructions (3)

The "Branch" instruction does not affect LR.

Note: Architecture 4T offers a further ARM branch instruction, BX
See Thumb Instruction Set Module for details.

BL <subroutine>
Stores return address in LR
Returning implemented by restoring the PC from LR
For non-leaf functions, LR will have to be stacked

funcl func?2

STMFD sp!,{regs,lr}

.B|_ funcl / BL func2

LDMFD sp!,{regs,pc} .
MOV pg, Ir

h—
————
POWERED

8/22/2008

EE382N-4 Embedded Systems Architecture

Conditional Branches

Branch Interpretation Normal uses

B Unconditional Always take this branch

BAL Always Always take this branch

BEQ Equal Comparison equal or zero result

BNE Not equal Comparison not equal or non-zero result

BPL Plus Result positive or zero

BMI Minus Result minus or negative

BCC Carry clear Arithmetic operation did not give carry-out

BLO Lower Unsigned comparison gave lower

BCS Carry set Arithmetic operation gave carry-out

BHS Higher or same Unsigned comparison gave higher or same

BVC Overflow clear Signed integer operation; no overflow occurred
BVS Overflow set Signed integer operation; overflow occurred
BGT Greater than Signed integer comparison gave greater than
BGE Greater or equal Signed integer comparison gave greater or equal
BLT Less than Signed integer comparison gave less than

BLE Less or equal Signed integer comparison gave less than or equal
BHI Higher Unsigned comparison gave higher

BLS Lower or same Unsigned comparison gave lower or same

POWERED

8/22/2008

EE382N-4 Embedded Systems Architecture

Data processing Instructions

Largest family of ARM instructions, all sharing the same
instruction format.

Contains:
Arithmetic operations
Comparisons (no results - just set condition codes)
Logical operations
Data movement between registers

Remember, this is a load / store architecture
These instruction only work on registers, NOT memory.

They each perform a specific operation on one or two operands.

First operand always a register - Rn
Second operand sent to the ALU via barrel shifter.

We will examine the barrel shifter shortly.

8/22/2008

POWERED

EE382N-4 Embedded Systems Architecture

Arithmetic Operations

Operations are:

ADD operandl + operand2

ADC operandl + operand2 + carry

SuUB operandl - operand2

SBC operandl - operand2 + carry -1

RSB operand2 - operandl

RSC operand2 - operandl + carry - 1
Syntax:

<Operation>{<cond>}{S} Rd, Rn, Operand2

Examples
ADDrO, rl, r2
SUBGT r3, r3, #1
RSBLES r4, r5, #5

8/22/2008

; Add

; Add with carry

; Subtract

; Subtract with carry

; Reverse subtract

; Reverse subtract with carry

ARM

n W POWERED

N
~

Comparisons

The only effect of the comparisons is to update the condition

flags. Thus no need to set S bit.

Operations are:
CMP operandl - operand2
CMN operandl + operand2
TST operandl AND operand2
TEQ operandl EOR operand2

Syntax:
<Operation>{<cond>} Rn, Operand2

Examples:
CMP ro, rl
TSTEQ r2, #5

8/22/2008

EE382N-4 Embedded Systems Architecture

; Compare

; Compare negative
; Test

; Test equivalence

n W POWERED

ARM

N
(o)

EE382N-4 Embedded Systems Architecture

Logical Operations

Operations are:

AND operandl AND operand2

EOR operandl EOR operand2

ORR operandl OR operand2

ORN operandl NOR operand2

BIC operandl AND NOT operand2 [ie bit clear]

Syntax:
<Operation>{<cond>}S} Rd, Rn, Operand2

Examples:
AND r0,rl,r2
BICEQTr2, r3, #7
EORS rl,r3,r0

8/22/2008

n W POWERED

ARM

N
()

EE382N-4 Embedded Systems Architecture

Data Movement

Operations are:
MOV operand2
MVN NOT operand2

Note that these make no use of operandl.

Syntax:
<Operation>{<cond>}{S} Rd, Operand2
Examples:
MOV ro, rl
MOVS r2, #10
MVNEQ rl,#0

8/22/2008

n W POWERED

ARM

w
o

EE382N-4 Embedded Systems Architecture

The Barrel Shifter

The ARM doesn’t have actual shift instructions.

Instead it has a barrel shifter which provides a mechanism to
carry out shifts as part of other instructions.

So what operations does the barrel shifter support?

S
ARMa

8/22/2008

EE382N-4 Embedded Systems Architecture
Barrel Shifter - Left Shift

Shifts left by the specified amount (multiplies by powers of two)

e.g.
LSL #5 => multiply by 32

Logical Shift Left (LSL)

A

A
o

CF Destination

n W POWERED

ARM

8/22/2008

w
N

Barrel Shifter - Right Shifts

EE382N-4 Embedded Systems Architecture

Logical Shift Right

Logical Shift Right (LSR)

Shifts right by the specified

amount (divides by powers of 0 —

Destination

two) e.g.

zero shifted in

LSR #5 = divide by 32

Y

CF

Y

Arithmetic Shift Right
Arithmetic Shift Right (ASR) |
Shifts right (divides by powers of
two) and preserves the sign bit, > | Destination
for 2's complement operations.
€8 Sign bit shifted in

ASR #5 = divide by 32

CF

POWERED

8/22/2008

Barrel Shifter - Rotations

Rotate Right (ROR)

Similar to an ASR but the bits
wrap around as they leave the
LSB and appear as the MSB.

e.g. ROR #5

Note the last bit rotated is also
used as the Carry Out.

Rotate Right Extended (RRX)

This operation uses the CPSR C
flag as a 33rd bit.

Rotates right by 1 bit. Encoded
as ROR #0

EE382N-4 Embedded Systems Architecture

Rotate Right

> Destination > CF
Rotate Right through Carry
> Destination > CF

POWERED

8/22/2008

EE382N-4 Embedded Systems Architecture

Using the Barrel Shifter: The Second Operand

Register, optionally with shift
operation applied.

Operand Operand ~———-

1 2 \\ Shift value can be either be:
\ 5 bit unsigned integer
\ Specified in bottom byte of
\ another register.
Barrel \
Shifter \
l \ [* Immediate value
» 8 bit number

» Can be rotated right
through an even number

ALU of positions.

» Assembler will calculate
rotate for you from
constant.

Result

POWERED

8/22/2008

EE382N-4 Embedded Systems Architecture

Second Operand : Shifted Register

The amount by which the register is to be shifted is contained in

either:

the immediate 5-bit field in the instruction
NO OVERHEAD
Shift is done for free - executes in single cycle.
the bottom byte of a register (not PC)
Then takes extra cycle to execute
ARM doesn’t have enough read ports to read 3 registers at once.
Then same as on other processors where shift is
separate instruction.

If no shift is specified then a default shift is applied: LSL #0

i.e. barrel shifter has no effect on value in register.

8/22/2008

POWERED

EE382N-4 Embedded Systems Architecture

Second Operand: Using a Shifted Register

Using a multiplication instruction to multiply by a constant means first loading
the constant into a register and then waiting a number of internal cycles for
the instruction to complete.

A more optimum solution can often be found by using some combination of

MOVs, ADDs, SUBs and RSBs with shifts.
Multiplications by a constant equal to a ((power of 2) £ 1) can be done in one cycle.

MOV R2, RO, LSL #2 ; Shift RO left by 2, write to R2, (R2=R0x4)
ADDR9, R5,R5,LSL#3 ;R9=R5+R5x80rR9=R5x9

RSBR9, R5,R5,LSL#3 ;R9=R5x8-R50rR9=R5x7

SUB R10, R9, R8, LSR#4 ; R10=R9-R8/ 16

MOV R12, R4, ROR R3 ; R12 = R4 rotated right by value of R3

POWERED

8/22/2008

EE382N-4 Embedded Systems Architecture

Second Operand: Immediate Value (1)

There is no single instruction which will load a 32 bit immediate constant into

a register without performing a data load from memory.
All ARM instructions are 32 bits long
ARM instructions do not use the instruction stream as data.

The data processing instruction format has 12 bits available for operand2
If used directly this would only give a range of 4096.

Instead it is used to store 8 bit constants, giving a range of 0 - 255.

These 8 bits can then be rotated right through an even number of positions (ie
RORs by 0, 2, 4,..30).
This gives a much larger range of constants that can be directly loaded, though some
constants will still need to be loaded from memory.

POWERED

8/22/2008

EE382N-4 Embedded Systems Architecture

Second Operand: Immediate Value (2)

This gives us:

0-255 [0 - Oxff]

256,260,264,..,1020 [0x100-0x3fc, step 4, 0x40-0xff ror 30]

1024,1040,1056,..,4080 [0x400-0xff0, step 16, 0x40-0xff ror 28]

4096,4160, 4224,..,16320 [0x1000-0x3fc0, step 64, 0x40-0xff ror 26]
These can be loaded using, for example:

MOV r0, #0x40, 26 ; => MOV r0, #0x1000 (ie 4096)

To make this easier, the assembler will convert to this form for us if simply
given the required constant:

MOV r0, #4096 ; => MOV r0, #0x1000 (ie Ox40 ror 26)
The bitwise complements can also be formed using MVN:
MOV r0, #OxFFFFFFFF ; assembles to MVN r0, #0

If the required constant cannot be generated, an error will
be reported.

POWERED

8/22/2008

EE382N-4 Embedded Systems Architecture

Loading full 32 bit constants

Although the MOV/MVN mechanism will load a large range of constants into a
register, sometimes this mechanism will not generate the required constant.

Therefore, the assembler also provides a method which will load ANY 32 bit
constant:
LDR rd,=numeric constant

If the constant can be constructed using either a MOV or MVN then this will be
the instruction actually generated.

Otherwise, the assembler will produce an LDR instruction with a PC-relative
address to read the constant from a literal pool.

LDR r0,=0x42 ; generates MOV r0,#0x42
LDR r0,=0x55555555 ; generate LDR r0,[pc, offset to lit pool]

DCD 0x55555555

As this mechanism will always generate the best instruction for a given case, it
is the recommended way of loading constants.

8/22/2008

POWERED

EE382N-4 Embedded Systems Architecture

Multiplication Instructions

The Basic ARM provides two multiplication instructions.

Multiply
MUL{<cond>}{S} Rd, Rm, Rs ; Rd=Rm * Rs

Multiply Accumulate - does addition for free
MLA{<cond>}S} Rd, Rm, Rs,Rn ; Rd = (Rm * Rs) + Rn

Restrictions on use:

Rd and Rm cannot be the same register

Can be avoided by swapping Rm and Rs around. This works because multiplication
is commutative.

Cannot use PC.
These will be picked up by the assembler if overlooked.

Operands can be considered signed or unsigned
Up to user to interpret correctly.

POWERED

8/22/2008

EE382N-4 Embedded Systems Architecture

Multiplication Implementation

The ARM makes use of Booth’s Algorithm to perform integer
multiplication.

On non-M ARM:s this operates on 2 bits of Rs at a time.
For each pair of bits this takes 1 cycle (plus 1 cycle to start with).

However when there are no more 1’s left in Rs, the multiplication will early-

terminate.

Example: Multiply 18 and -1 : Rd = Rm * Rs

Rm

Rs

17 cycles

18

-1

T 1
0000

11
0000

T T
0000

T 1
0000

T 1
0000

T 1
0000

o

o

0010

T 1
1111

T 1
1111

T 1
1111

T 1
1111

T 1
1111

T 1
1111

[EEN
[ERY

= —

— —

T 1
1111

18 Rs
-1 Rm
4 cycles

Note: Compiler does not use early termination criteria to
decide on which order to place operands.

POWERED

8/22/2008

EE382N-4 Embedded Systems Architecture

Extended Multiply Instructions

M variants of ARM cores contain extended multiplication

hardware. This provides three enhancements:
An 8 bit Booth’s Algorithm is used
Multiplication is carried out faster (maximum for standard instructions is now 5
cycles).
Early termination method improved so that now completes multiplication
when all remaining bit sets contain
all zeroes (as with non-M ARMs), or
all ones.
Thus the previous example would early terminate in 2 cycles in both
cases.
64 bit results can now be produced from two 32bit operands

Higher accuracy.
Pair of registers used to store resulit.

POWERED

8/22/2008

EE382N-4 Embedded Systems Architecture

Multiply-Long & Multiply-Accumulate Long

Instructions are
MULL which gives RdHi,RdLo:=Rm*Rs
MLAL which gives RdHi,RdLo:=(Rm*Rs)+RdHi,RdLo

However the full 64 bit of the result now matter (lower precision
multiply instructions simply throws top 32bits away)
Need to specify whether operands are signed or unsigned

Therefore syntax of new instructions are:
UMULL{<cond>}S} RdLo,RdHi,Rm,Rs
UMLAL{<cond>}{S} RdLo,RdHi,Rm,Rs
SMULL{<cond>}{S} RdLo, RdHi, Rm, Rs
SMLAL{<cond>}{S} RdLo, RdHi, Rm, Rs

Not generated by the compiler.
Warning : Unpredictable on non-M ARM:s.

=

g

=

ARMa
~

8/22/2008

EE382N-4 Embedded Systems Architecture

Load / Store Instructions

The ARM is a Load / Store Architecture:
Does not support memory to memory data processing operations.
Must move data values into registers before using them.

This might sound inefficient, but in practice it isn’t:
Load data values from memory into registers.
Process data in registers using a number of data processing instructions
which are not slowed down by memory access.
Store results from registers out to memory.

The ARM has three sets of instructions which interact with main

memory. These are:
Single register data transfer (LDR / STR).
Block data transfer (LDM/STM).
Single Data Swap (SWP).

ARM

8/22/2008

n W POWERED

N
(6]

EE382N-4 Embedded Systems Architecture

Single register data transfer

The basic load and store instructions are:
Load and Store Word or Byte

LDR / STR / LDRB / STRB
ARM Architecture Version 4 also adds support for Halfwords and

signed data.

Load and Store Halfword
LDRH / STRH

Load Signed Byte or Halfword - load value and sign extend it to 32 bits.
LDRSB / LDRSH

All of these instructions can be conditionally executed by

inserting the appropriate condition code after STR / LDR.
e.g. LDREQB

Syntax:
<LDR|STR>{<cond>}{<size>} Rd, <address>

=

g

=

ARMa
~

8/22/2008

EE382N-4 Embedded Systems Architecture

Load and Store Word or Byte: Base Register

The memory location to be accessed is held in a base register

STR 10, [r1] ; Store contents of r0 to location pointed to
; by contents of rl.
LDR r2, [r1] ; Load r2 with contents of memory location

; pointed to by contents of rl.

ro Memory
Source I
Register I
for STR I
rl r2
Base Destination
Register 0x200 — > 0x200 0x5 —_— Register
| for LDR
I
I

POWERED

8/22/2008

EE382N-4 Embedded Systems Architecture
Load/Store Word or Byte: Offsets from the Base Register

As well as accessing the actual location contained in the base
register, these instructions can access a location offset from the
base register pointer.

This offset can be

An unsigned 12bit immediate value (ie 0 - 4095 bytes).
A register, optionally shifted by an immediate value

This can be either added or subtracted from the base register:
Prefix the offset value or register with ‘+’ (default) or ‘-’.

This offset can be applied:

before the transfer is made: Pre-indexed addressing
optionally auto-incrementing the base register, by postfixing the instruction with
an‘V,

after the transfer is made: Post-indexed addressing
causing the base register to be auto-incremented.

n W POWERED

ARM

8/22/2008

I
[00]

EE382N-4 Embedded Systems Architecture
Load/Store Word or Byte: Pre-indexed Addressing

Example: STR r0, [r1,#12]

Memory r0 Source

/ for STR

Offset I

_) 0x20c 0x5
rl T
Base
Register ' > (0x200

To store to location 0x1f4 instead use: STR r0, [rl,#-12]
To auto-increment base pointer to 0x20c use: STR r0, [r1, #12]!

If r2 contains 3, access 0x20c by multiplying this by 4:
STRrO, [r1, r2, LSL #2]

n W POWERED

ARM

8/22/2008

Y
(-]

EE382N-4 Embedded Systems Architecture

Load and Store Word or Byte: Post-indexed Addressing

Example: STRrO, [r1], #12

Updated "t
Base 0x20c
Register
Original rl

Base 0x200
Register

Offset

-— 0x20¢

A

\

—> 0x200

Memory

0x5

/

ro
Source

Register

for STR

To auto-increment the base register to location 0x1f4 instead use:

STRrO, [r1], #-1

2

If r2 contains 3, auto-increment base register to 0x20c by multiplying this by

4:

STRrO0, [r1], r2, LSL #2

POWERED

8/22/2008

EE382N-4 Embedded Systems Architecture

Load and Stores with User Mode Privilege

When using post-indexed addressing, there is a further form of

Load/Store Word/Byte:
<LDR|STR>{<cond>}B]}T Rd, <post_indexed_address>

When used in a privileged mode, this does the load/store with

user mode privilege.
Normally used by an exception handler that is emulating a memory access
instruction that would normally execute in user mode.

=

g

=

ARMa
~

8/22/2008

EE382N-4 Embedded Systems Architecture

Example Usage of Addressing Modes

Imagine an array, the first element of which is pointed to by the contents of r0.

If we want to access a particular element, Memory

]] element Offset
then we can use pre-indexed addressing: . >

rl is element we want.
LDRr2, [rO, r1, LSL #2]

3 12

Pointer to 2 8
If we want to step through every start of array 4
element of the array, for instance I:_, 0 0

to produce sum of elements in the

array, then we can use post-indexed addressing within a loop:
rl is address of current element (initially equal to r0).
LDR r2, [r1], #4

Use a further register to store the address of final element,
so that the loop can be correctly terminated.

POWERED

8/22/2008

EE382N-4 Embedded Systems Architecture

Offsets for Halfword and Signed Halfword / Byte Access

The Load and Store Halfword and Load Signed Byte or Halfword
instructions can make use of pre- and post-indexed addressing in
much the same way as the basic load and store instructions.

However the actual offset formats are more constrained:

The immediate value is limited to 8 bits (rather than 12 bits) giving an offset
of 0-255 bytes.

The register form cannot have a shift applied to it.

=

g

=

ARMa
~

8/22/2008

EE382N-4 Embedded Systems Architecture

Effect of endianess

The ARM can be set up to access its data in either little or big
endian format.

Little endian:
Least significant byte of a word is stored in bits 0-7 of an addressed word.

Big endian:
Least significant byte of a word is stored in bits 24-31 of an addressed word.

This has no real relevance unless data is stored as words and then

accessed in smaller sized quantities (halfwords or bytes).
Which byte / halfword is accessed will depend on the endianess of the
system involved.

n W POWERED

ARM

8/22/2008

Ul
S

EE382N-4 Embedded Systems Architecture

YA Endianess Example

r0 = 0x11223344

31 2423 1615 87 0

11|22|33|44

31 2423 1615 87 : 0 31 % 2423 1615 87 0

ri=0x100 | 11 I22 | 33 | 44 Memory 44 | 33 | 22 | 11 | r1=0x100
Little-endian LDRB r2, [r1] Big-endian
31 2423 1615 87 0 31 2423 1615 87 0
00 | 00 | 00 | 44 00 | 00 | 00 | 11
r2 = 0x44 r2 = 0x11

POWERED

8/22/2008

Block Data Transfer (1)

EE382N-4 Embedded Systems Architecture

The Load and Store Multiple instructions (LDM / STM) allow
betweeen 1 and 16 registers to be transferred to or from

memory.

The transferred registers can be either:

Any subset of the current bank of registers

(default).

Any subset of the user mode bank of registers when in a priviledged mode

(postfix instruction with a ‘).

31 28 27 24 23 22 21 20 19 16 15
[T | | I 1 | [
Cond |1 0 O|P|U|S|W|L| Rn |

I e e I A I B
Register list

| I | | Il

Condition field Base register
Up/Down bit Load/Store bit
0 = Down; subtract offset from base 0 = Store to memory
1= Up ; add offset to base 1 = Load from memory
Pre/Post indexing bit L—— Write- back bit
0 = Post; add offset after transfer, 0= no_wrlte-back_
1 =Pre ; add offset before transfer 1 = write address into base

PSR and force user bit

0 = don’t load PSR or force user mode

Each bit corresponds to a particular

register. For example:
« Bit 0 set causes r0 to be transferred.
« Bit 0 unset causes r0 not to be transferred.

At least one register must be
transferred as the list cannot be empty.

1 =load PSR or force user mode ARM

8/22/2008

n W POWERED

(&)
(o))

Block Data Transfer (2)

Base register used to determine where memory access should
OCCuUr.
4 different addressing modes allow increment and decrement inclusive or
exclusive of the base register location.
Base register can be optionally updated following the transfer (by appending
it with an V.
Lowest register number is always transferred to/from lowest memory
location accessed.

These instructions are very efficient for
Saving and restoring context
For this useful to view memory as a stack.
Moving large blocks of data around memory
For this useful to directly represent functionality of the instructions.

8/22/2008

EE382N-4 Embedded Systems Architecture

POWERED

EE382N-4 Embedded Systems Architecture

Stacks

A stack is an area of memory which grows as new data is
“pushed” onto the “top” of it, and shrinks as data is “popped” off
the top.

Two pointers define the current limits of the stack.
A base pointer
used to point to the “bottom” of the stack (the first location).

A stack pointer
used to point the current “top” of the stack.

PUSH
{1,2,3} POP
SP > 3 Result of
SP—— 2 pop = 3
SP— BASE—> [BASE—>
BASE — >

POWERED

8/22/2008

EE382N-4 Embedded Systems Architecture

Stack Operation

Traditionally, a stack grows down in memory, with the last “pushed” value at
the lowest address. The ARM also supports ascending stacks, where the stack
structure grows up through memory.

The value of the stack pointer can either:

Point to the last occupied address (Full stack)
and so needs pre-decrementing (ie before the push)

Point to the next occupied address (Empty stack)
and so needs post-decrementing (ie after the push)

The stack type to be used is given by the postfix to the instruction:
STMFD / LDMFD : Full Descending stack
STMFA / LDMFA : Full Ascending stack.
STMED / LDMED : Empty Descending stack
STMEA / LDMEA : Empty Ascending stack

Note: ARM Compiler will always use a Full descending stack.

POWERED

8/22/2008

EE382N-4 Embedded Systems Architecture

AL & COMPUTER ENGINEER

Stack Examples

STMFD sp!, STMED sp!, STMFA sp!, STMEA sp!,
{r0,rl1,r3-r5} {r0,rl,r3-r5} {r0,rl,r3-r5} {r0,rl,r3-r5}

0x418
Py
SNt

Old SP— Old SP— Old SP

Old SP —> f‘y‘y‘y‘y‘y‘y‘;

FrE Ty eey

iy
g

i i A

e i

R
e

i g i g

.,

e i R

FrErTeey

b

Py P,

e e i g g
gy

Py

e
e e
e

Flrdr

Ox3e8

.,
.,
.,

P,
P,
P,
P,
P,
P

W POWERED

>
~
K 4

EE382N-4 Embedded Systems Architecture

Stacks and Subroutines

One use of stacks is to create temporary register workspace for subroutines.
Any registers that are needed can be pushed onto the stack at the start of the
subroutine and popped off again at the end so as to restore them before
return to the caller :

STMFD sp!,{rO0-r12, Ir} ; stack all registers
........ : and the return address

LDMFD sp!,{r0-r12, pc} ; load all the registers
; and return automatically

See the chapter on the ARM Procedure Call Standard in the SDT Reference
Manual for further details of register usage within subroutines.

If the pop instruction also had the ‘S’ bit set (using ‘A’) then the transfer of the
PC when in a privileged mode would also cause the SPSR to be copied into the
CPSR (see exception handling module).

POWERED

8/22/2008

EE382N-4 Embedded Systems Architecture

Direct functionality of Block Data Transfer

When LDM / STM are not being used to implement stacks, it is

clearer to specify exactly what functionality of the instruction is:
i.e. specify whether to increment / decrement the base pointer, before or
after the memory access.

In order to do this, LDM / STM support a further syntax in

addition to the stack one:
STMIA / LDMIA : Increment After
STMIB / LDMIB : Increment Before
STMDA / LDMDA : Decrement After
STMDB / LDMDB : Decrement Before

=

g

=

ARMa
~

8/22/2008

EE382N-4 Embedded Systems Architecture

Example: Block Copy

Copy a block of memory, which is an exact multiple of 12 words long from the
location pointed to by r12 to the location pointed to by r13. r14 points to the

end of block to be copied.

; rl2 points to the start of the source data
; rl4 points to the end of the source data
; rl3 points to the start of the destination data

loop LDMIA r12!, {rO-rl1l1} ; load 48 bytes
STMIA r13!', {rO-rl1l1l} ; and store them
CMP riz, rl4 ; check for the end
BNE loop ; and loop until done

This loop transfers 48 bytes in 31 cycles
Over 50 Mbytes/sec at 33 MHz

ri3 ——

rl4 —

ri2——s

Increasing
Memory

POWERED

8/22/2008

EE382N-4 Embedded Systems Architecture

Swap and Swap Byte Instructions

Atomic operation of a memory read followed by a memory write
which moves byte or word quantities between registers and
memory.

Syntax:
SWP{<cond>}{B} Rd, Rm, [Rn]

temp

@/;Aemor; \@

Rm:I Rdl:l

To implement an actual swap of contents make Rd = Rm.

The compiler cannot produce this instruction.

=

g

=

ARMa
~

8/22/2008

EE382N-4 Embedded Systems Architecture

Software Interrupt (SWI)

3 2 2 B B B B B 1 Instruction Type
1 7 1 98| 7|6|5]|al3]|2 0 7 yp

Condition 1 1 1 1 SWI NUMBER Software Interrupt

In effect, a SWI is a user-defined instruction.

It causes an exception trap to the SWI hardware vector (thus
causing a change to supervisor mode, plus the associated state
saving), thus causing the SWI exception handler to be called.

The handler can then examine the comment field of the
instruction to decide what operation has been requested.

By making use of the SWI mechanism, an operating system can
implement a set of privileged operations which applications
running in user mode can request.

See Exception Handling Module for further details.

=

g

=

ARMa
~

8/22/2008

EE382N-4 Embedded Systems Architecture

=
)
=
i}
=
=
&
u
™

Backup

ARM

8/22/2008

EE382N-4 Embedded Systems Architecture

Assembler: Pseudo-ops

AREA -> chunks of data (Sdata) or code (Scode)

ADR -> load address into a register
ADR RO, BUFFER

ALIGN -> adjust location counter to word boundary usually after a
storage directive

END -> no more to assemble

=

B

=

ARMa
~

8/22/2008

EE382N-4 Embedded Systems Architecture

Assembler: Pseudo-ops

DCD -> defined word value storage area
BOW DCD 1024, 2055, 9051

DCB -> defined byte value storage area
BOB DCB 10, 12, 15

% -> zeroed out byte storage area
BLBYTE % 30

8/22/2008

&
=
=

ARMa

~

EE382N-4 Embedded Systems Architecture

Assembler: Pseudo-ops

IMPORT -> name of routine to import for use in this routine
IMPORT _printf ; C print routine

EXPORT -> name of routine to export for use in other routines
EXPORT add2 ; add2 routine

EQU -> symbol replacement
loopcnt EQU 5

=

B

=

ARMa
~

8/22/2008

EE382N-4 Embedded Systems Architecture

Assembly Line Format

label <whitespace> instruction <whitespace> ; comment

label: created by programmer, alphanumeric

whitespace: space(s) or tab character(s)

Instruction: op-code mnemonic or pseudo-op with required fields

comment: preceded by ; ignored by assembler but useful
to the programmer for documentation

NOTE: All fields are optional.

8/22/2008

n W POWERED

ARM

~
(@)

EE382N-4 Embedded Systems Architecture

Example: C assighments

C:

X = (a+ b) - c;

Assembler:

ADR r4,a ; get address for a

LDR rO,[r4] ; get value of a

ADR r4,b ; get address for b, reusing r4
LDR ri1,[r4] ; get value of b

ADD r3,r0,rl , compute a+tb

ADR r4,c ; get address for c

LDR r2,[r4] ; get value of c

SUB r3,r3,r2 ; complete computation of X
ADR r4,Xx ; get address for X

STR r3,[r4] ; store value of Xx

=

B

=

ARMa
~

© 2008 Wayne Wolf Computers as Components 2" ed.
8/22/2008

EE382N-4 Embedded Systems Architecture

Example: C assighment

C:
y = a*(b+c);

Assembler:
ADR r4.,b ;
LDR rO, [r4]
ADR r4,c ;
LDR rl1,[r4]

get address for b
; get value of b
get address for c
; get value of c

ADD r2,r0,rl ; compute partial result

ADR r4,a ;
LDR rO, [r4]

get address for a
; get value of a

MUL r2,r2,r0 ; compute final value for y

ADR r4.,y ;
STR r2,[r4]

© 2008 Wayne Wolf
8/22/2008

get address for y
; store y

Computers as Components 2" ed.

=

B

=

ARMa
~

Example: C assighment

C:

z =(a<<2) | (& 15);
Assembler:

ADR r4,a ; get address for a
LDR rO,[r4] ; get value of a
MOV rO,rO,LSL 2 ; perform shift
ADR r4,b ; get address for b
LDR ri1,[r4] ; get value of b
AND rl1,rl,#15 ; perform AND

ORR r1,rO,rl ; perform OR

ADR r4,z ; get address for z
STR r1,[r4] ; store value for z

© 2008 Wayne Wolf
8/22/2008

Computers as Components 2" ed.

EE382N-4 Embedded Systems Architecture

=

g

=

ARMa
~

EE382N-4 Embedded Systems Architecture

Example: if statement

C:
iIT (a>b) {x=5;y=c+d; }else x =c - d;
Assembler:
; compute and test condition
ADR r4,a ; get address for a
LDR rO,[r4] ; get value of a
ADR r4,b ; get address for b
LDR ri1,[r4] ; get value for b
CMP rO,rl ; compare a < b
BLE fblock ; 1f a ><= b, branch to false block

=

B

=

ARMa
~

© 2008 Wayne Wolf Computers as Components 2" ed.
8/22/2008

EE382N-4 Embedded Systems Architecture

if statement, cont’d.

; true block
MOV rO,#5 ; generate value for x
ADR r4,x ; get address for x
STR rO,[r4] ; store X
ADR r4,c ; get address for
LDR rO,[r4] ; get value of
ADR r4,d ; get address for
LDR rl1,[r4] ; get value of
ADD rO,r0O,rl ; compute y
ADR r4,y ; get address for y
STR rO,[r4] ; store y
B after ; branch around false block

o O O O

=

B

=

ARMa
~

© 2008 Wayne Wolf Computers as Components 2" ed.
8/22/2008

EE382N-4 Embedded Systems Architecture

if statement, cont’d.

, False block
fblock ADR r4,c ; get address for c
LDR rO,[r4] ; get value of c
ADR r4,d ; get address for d
LDR ri1,[r4] ; get value for d
SUB rO,r0O,rl ; compute a-b
ADR r4,x ; get address for x
STR rO,[r4] ; store value of X
after ...

=

g

=

ARMa
~

© 2008 Wayne Wolf Computers as Components 2" ed.
8/22/2008

Example: Conditional instruction implementation

EE382N-4 Embedded Systems Architecture

- true block

MOVLT
ADRLT
STRLT
ADRLT
LDRLT
ADRLT
LDRLT
ADDLT
ADRLT
STRLT

rO,#5 ; generate value for X
rd,x ; get address for X
ro,[rd4] ; store Xx

rd,c ; get address for c
ro,[r4] ; get value of c
rd,d ; get address for d
rl,[r4] ; get value of d
ro,rO,rl ; compute y

rd,y ; get address for y
ro,[r4] ; store vy

© 2008 Wayne Wolf Computers as Components 2" ed.
8/22/2008

=

g

=

ARMa
~

Conditional instruction implementation, cont’d.

; False block
ADRGE r4,c ;
LDRGE rO,[r4]
ADRGE r4.,d ;
LDRGE r1,[r4]

EE382N-4 Embedded Systems Architecture

get address for c
; get value of c
get address for d
; get value for d

SUBGE rO,rO,rl ; compute a-b

ADRGE r4.,x ;
STRGE rO,[r4]

© 2008 Wayne Wolf
8/22/2008

get address for X
; store value of X

Computers as Components 2" ed.

=

g

=

ARMa
~

EE382N-4 Embedded Systems Architecture

Example: switch statement

C.

switch (test) { case 0: .. break; case 1: .. }

Assembler:

ADR r2,test ; get address for test

LDR rO,[r2] ; load value for test

ADR rl,switchtab ; load address for switch table

LDR r1,[rl1,rO,LSL #2] ; index switch table
switchtab DCD caseO

DCD casel

=

B

=

ARMa
~

© 2008 Wayne Wolf Computers as Components 2" ed.
8/22/2008

EE382N-4 Embedded Systems Architecture

Example: FIR filter

C:
for (1=0, T=0; i1<N; 1++)
f =T+ cl[1]*[1];
Assembler
; loop iInitiation code
MOV rO,#0 ; use rO for 1
MOV r8,#0 ; use separate i1Index for arrays
ADR r2,N ; get address for N
LDR ri1,[r2] ; get value of N
MOV r2,#0 ; use r2 for T

© 2008 Wayne Wolf Computers as Components 2" ed.
8/22/2008

=

g

=

ARMa
~

EE382N-4 Embedded Systems Architecture

FIR filter, cont’.d

ADR r3,c ; load r3 with base of c
ADR r5,x ; load r5 with base of Xx
; loop body

floop LDR r4,[r3,r8] ; get c[i]
LDR r6,[r5,r8] ; get x[1i]
MUL r4,r4,r6 ; compute c[1]*x[1]
ADD r2,r2,r4 ; add into running sum
ADD r8,r8,#4 ; add one word offset to array i1ndex
ADD rO0,r0,#1 add 1 to 1
CMP rO,rl ; exit?
BLT loop ; 1f 1 < N, continue

=

g

=

ARMa
~

© 2008 Wayne Wolf Computers as Components 2" ed.
8/22/2008

Mnemonic Instruction

ADC Add with carry

ADD Add

AND AND

B Branch

BIC Bit Clear

BL Branch with Link

BX Branch and Exchange
CDP Coprocessor Data Processing
CMN Compare Negative
CMP Compare

EE382N-4 Embedded Systems Architecture

ARM Instruction Set Summary (1/4)

Action
Rd:=Rn+0p2+Carry
Rd:=Rn+0p2

Rd:=Rn AND Op2
R15:=address

Rd:=Rn AND NOT Op2

R14:=R15
R15:=address
R15:=Rn

T bit:=Rn[0]
(Coprocessor-specific)

CPSR flags:=Rn+0Op2
CPSR flags:=Rn-Op2

ARM

oo,M
N

EE382N-4 Embedded Systems Architecture

ARM Instruction Set Summary (2/4)

Mnemonic
EOR
LDC
LDM
LDR
MCR

MLA
MOV
MRC

MRS
MSR

Instruction Action

Exclusive OR Rd:=Rn”*Op2

Load Coprocessor from memory (Coprocessor load)

Load multiple registers Stack Manipulation (Pop)
Load register from memory Rd:=(address)

Move CPU register to coprocessor CRn:=rRn{<op>cRm}
register
Multiply Accumulate Rd:=(Rm*Rs)+Rn

Move register or constant Rd:=0Op2

Move from coprocessor register to rRn:=cRn{<op>cRm}
CPU register
Move PSR status/flags to register Rn:=PSR

Move register to PSR status/flags PSR:=Rm

n W POWERED

ARM

[00)
w

EE382N-4 Embedded Systems Architecture

ARM Instruction Set Summary (3/4)

Mnemonic Instruction Action
MUL Multiply Rd:=Rm*Rs
MVN Move negative register Rd:=~0p2
ORR OR Rd:=Rn OR Op2
RSB Reverse Subtract Rd:=0p2-Rn
RSC Reverse Subtract with Carry ~ Rd:=Op2-Rn-1+Carry
SBC Subtract with Carry Rd:=Rn-Op2-1+Carry
STC Store coprocessor registerto address:=cRn
memory
STM Store Multiple Stack manipulation (Push)

=

B

=

ARMa
~

EE382N-4 Embedded Systems Architecture

ARM Instruction Set Summary (4/4)

Mnemonic
STR

SUB

SWI

SWP

TEQ
TST

Instruction

Store register to memory
Subtract

Software Interrupt

Swap register with memory

Test bitwise equality

Test bits

Action
<address>:=Rd
Rd:=Rn-0Op2
OS call

Rd:=[Rn]
[Rn]:=Rm
CPSR flags:=Rn EOR Op2

CPSR flags:=Rn AND Op?2

=

g

=

ARMa
~

	The ARM Instruction Set Architecture
	Main features of the ARM Instruction Set
	Coprocessors
	Thumb
	Processor Modes
	The Registers
	The ARM Register Set
	Register Organization Summary
	Accessing Registers using ARM Instructions
	The Program Status Registers (CPSR and SPSRs)
	Condition Flags
	The Program Counter (R15)
	Exception Handling and the Vector Table
	The Original Instruction Pipeline
	Pipeline changes for ARM9TDMI
	Pipeline changes for ARM10 vs. ARM11 Pipelines
	ARM Instruction Set Format
	Conditional Execution
	The Condition Field
	Using and updating the Condition Field
	Conditional Execution and Flags
	Branch instructions (1)
	Branch instructions (2)
	Branch instructions (3)
	Conditional Branches
	Data processing Instructions
	Arithmetic Operations
	Comparisons
	Logical Operations
	Data Movement
	The Barrel Shifter
	Barrel Shifter - Left Shift
	Barrel Shifter - Right Shifts
	Barrel Shifter - Rotations
	Using the Barrel Shifter: The Second Operand
	Second Operand : Shifted Register
	Second Operand: Using a Shifted Register
	Second Operand: Immediate Value (1)
	Second Operand: Immediate Value (2)
	Loading full 32 bit constants
	Multiplication Instructions
	Multiplication Implementation
	Extended Multiply Instructions
	Multiply-Long & Multiply-Accumulate Long
	Load / Store Instructions
	Single register data transfer
	Load and Store Word or Byte: Base Register
	Load/Store Word or Byte: Offsets from the Base Register
	Load/Store Word or Byte: Pre-indexed Addressing
	Load and Store Word or Byte: Post-indexed Addressing
	Load and Stores with User Mode Privilege
	Example Usage of Addressing Modes
	Offsets for Halfword and Signed Halfword / Byte Access
	Effect of endianess
	YA Endianess Example
	Block Data Transfer (1)
	Block Data Transfer (2)
	Stacks
	Stack Operation
	Stack Examples
	Stacks and Subroutines
	Direct functionality of Block Data Transfer
	Example: Block Copy
	Swap and Swap Byte Instructions
	Software Interrupt (SWI)
	Backup
	Assembler: Pseudo-ops
	Assembler: Pseudo-ops
	Assembler: Pseudo-ops
	Assembly Line Format
	Example: C assignments
	Example: C assignment
	Example: C assignment
	Example: if statement
	if statement, cont’d.
	if statement, cont’d.
	Example: Conditional instruction implementation
	Conditional instruction implementation, cont’d.
	Example: switch statement
	Example: FIR filter
	FIR filter, cont’.d
	ARM Instruction Set Summary (1/4)
	ARM Instruction Set Summary (2/4)
	ARM Instruction Set Summary (3/4)
	ARM Instruction Set Summary (4/4)

