Bitcoin Scripts and Wallets

MRS ERE

Recap: the Bitcoin blockchain

enesis
gblock BH, BH, BH,

version |(4 bytes)
> prev (32 bytes)| [—> pPrev H_. prev
time (4 bytes) __I_)

bits (4 bytes)
nonce |(4 bytes)
Tx root (32 bytes)

80 bytes

o

Tx root Tx root

4D o

TX sequence

View the blockchain as a sequence of Tx (append-only)

Y

coinbase Tx

Tx cannot be erased: mistaken Tx = locked or lost of funds

inputs

outputs

(segwit)
(4 bytes)

Tx structure (non-coinbase)

input[O0]
input[1]
input[2]

input:

output[0]
output[1]

TxID = H(Tx)

witnhesses

locktime

(excluding witnesses)

output:

earliest block # that can include Tx

TxID
out-index

ScriptSig
seq

value
ScriptPK

value =

32 byte hash
4 byte index

program
ignore

8 bytes

program

#BTC/108

null locktime

Tx1:
(funding Tx)

TX2:
(spending Tx)

identifies
a UTXO

| P
UTXO, ‘ UTXO,

null locktime

Tx1:
(funding Tx)

UTXO: unspent Tx output

TX2:
(spending Tx)

identifies
a UTXO

| P
UTXO, ‘ UTXO,

Validating Tx2

program from funding Tx:

Miners check (for each input): / XD b oot

1. The program | ScriptSig | ScriptPK @ returns true

~
5 . . program from spending Tx:
2. |TxID | index s in the current UTXO set | proof that conditions

are met

3. sum input values > sum output values

After Tx2 is posted, miners remove UTXO, from UTXO set

Transaction types: (1) P2PKH

pay to public key hash

Alice want to pay Bob 5 BTC:

* step l:
* step 2:
* step 3:
* step 4.

ScriptPKg:

Bob generates sig key pair (pkg, skg) + Gen()

Bob computes his Bitcoin address as Addr; + H(pkg)
Bob sends Addr, to Alice

Alice creates Tx:

5 ScriptPk, 2 Scriptpk, 0

7 BTC UTXO, for Bob UTXO, for Alice (change)

DUP HASH256 <Addrg> EQVERIFY CHECKSIG

Transaction types: (1) P2PKH

Later, when Bob wants to spend his UTXO: create a Tx,qq

points to \
UTXO, .

ScriptSigg: <sig> <pkg>

<sig> = Sign(skg, Tx) where Tx = (Tx,.,q excluding all ScriptSigs) (SIGHASH_ALL)

Miners validate that | ScriptSigg | ScriptPKy | returns true

Segregated Witness

ECDSA malleability:

e given (m, sig) anyone can create (m, sig’) with sig # sig’
= miner can change sig in Tx, and change TxID = H(Tx)

= Tx issuer cannot tell what TxID is, until Tx is posted

= |leads to problems and attacks

Segregated witness: signature is moved to witness field in Tx
TxID = Hash(Tx without witnesses)

Transaction types: (2) P2SH: pay to script hash

(pre SegWit in 2017)
Let’s payer specify a redeem script (instead of just pkhash)

Usage: (1) Bob publishes hash(redeem script) <«— Bitcoint addr.
(2) Alice sends funds to that address in funding Tx
(3) Bob can spend UTXO if he can satisfy the script

ScriptPK in UTXO:

ScriptSig to spend:

HASH160 <H(redeem script)> EQUAL

<sig,> <sig,> ... <sig, > <redeem script>

payer can specify complex conditions for when UTXO can be spent

Miner verifies:
(1) <ScriptSig> ScriptPK =true «— spending Tx gave correct script

(2) ScriptSig = true «— script is satisfied

Example P2SH: multisig

Goal: spending a UTXO requires t-out-of-n signatures

Redeem script for 2-out-of-3: (chosen by payer)
52> <PK,;> <PK,> <PK;> <3> CHECKMULTISIG]-\

v

threshold L—? hash gives P2SH address

v
ScriptSig to spend: (by payee) | <0> <sigl> <sig3> <redeem script>

(in the clear)

Abstractly ...

Multisig address: addr = H(PK,, PK,, PKj;, 2-of-3)

Tx1:
(funding Tx)

TX2:
(spending Tx)

Example Bitcoin scripts

Protecting assets with a co-signatory

Alice stores her funds in UTXOs for | addr = 2-0f-2(PK,, PK)

PK, spending Tx PKs
Alice " BitGo
is this Alice
yep, it's me
‘ post Tx with <sig,> <sig.> | <sig.> on TX

= theft of Alice’s SK, does not compromise BTC

Escrow service

Alice wants to buy a backpack for 0.1B from merchant Bob
Goal: Alice only pays after backpack arrives, but can’t not pay
addr = 2-of-3(PK,, PK;, PK))

post want backpack for 0.18
Alice ~ Bob Judge
E?y(l)rrlelrét __once see Tx on chain
0 addr PK, mail backpack PK, PK,
(UTXO,) | backpack arrives . _redeem using
A send <sig,> on Tx: <sig,> <sigg>

UTXO,— (PK;:0.1, PK,:0.01) on Tx

Escrow service: a dispute

(1) Backpack never arrives: (Bob at fault)
Alice gets her funds back with help of Judge and a Tx:
Tx: (UTXO,— PK, , siga, sigm(jlge) [2-out-of-3]

(2) Alice never sends sig,: (Alice at fault)
Bob gets paid with help of Judge as a Tx:
Tx: (UTXO,— PK; , sigg, Sigjuqee) [2-out-of-3]

(3) Both are at fault: Judge publishes <sig;,,.> on Tx:
Tx: (UTXO,— PK,:0.05, PKg: 0.05, PK,: 0.01)
Now either Alice or Bob can execute this Tx.

Cross Chain Atomic Swap

Alice has 5 BTC, Bob has 2 LTC (LiteCoin). They want to swap.

Want a sequence of Tx on the Bitcoin and Litecoin chains s.t.:
e either success: Alice has 2 LTC and Bob has 5 BTX,
e or failure: no funds move.

Swap cannot get stuck halfway.

Goal: design a sequence of Tx to do this.

solution: programming proj #1 ex 4.

Managing crypto assets: Wallets

Managing secret keys

Users can have many PK/SK:
e one per Bitcoin address, Ethereum address, ...

Wallets:

* Generates PK/SK, and stores SK,
* Post and verify T,

* Show balances

Managing lots of secret keys

Types of wallets:

cloud (e.g., Coinbase): cloud holds secret keys (may pay interest)

laptop/phone: Electrum, MetaMask, ...
hardware: Trezor, Ledger, ...

paper: print all sk on paper

client stores
secret keys
S—

brain: memorize sk (bad idea) _

Lost key = lost funds

Simplified Payment Verification (SPV)

How does a wallet display Alice’s current balances?

* Laptop/phone wallet needs to verify an incoming payment
* Goal: do so w/o downloading entire blockchain (300 GB)

SPV: (1) download all block headers (52 MB)
block header | (2) TX download:

e wallet — server: list of my wallet addrs (Bloom filter)

e server = wallet: Txinvolving addresses +

Merkle proof to block header.

BERXMWIE, F—HFRAGITETR. AFREFMEHRGRL, 7
B LASGIE 3 A B RARF B

Tx ropt

Simplified Payment Verification (SPV)

Problems:
(1) Security: are BH the ones on the blockchain? Can server omit Tx?

 Electrum: download block headers from ten random servers,
optionally, also from a trusted full node.

List of servers: electrum.org/#community

(2) Privacy: remote server can test if an addr belongs to wallet

We will see better light client designs later in the course (e.g. Celo)

Hardware wallet: Ledger, Trezor, ...

End user can have lots of secret keys. How to store them ???

Hardware wallet (e.g., Ledger Nano X)

connects to laptop or phone wallet using Bluetooth or USB
manages many secret keys

- Bolos OS: each coin type is an app on top of OS
PIN to unlock HW (up to 48 digits)
screen and buttons to verify and confirm Tx

Hardware wallet: backup

Lose hardware wallet = loss of funds. What to do?

ECDSA public k
Idea 1: generate a secret seed k, € {0,1}2° public key

fori=1,2,..: sk < HMAC(k, i), pk — g5k

pk,, vk, pks, ...: random unlinkable addresses (without k)

k, is stored on HW device and in offline storage (as 24 words)
= in case of loss, buy new device, restore k,, recompute keys

On Ledger

When initializing ledger:

Write word &7

awtnl

e user asked to write down the 24 words

e each word encodes 11 bits (24 x 11 =268 bits)

 list of 2048 words in different languages (sip 39) ’

= e
NULO Mgy
e g

Example: English word list

2048 lines (2048 sloc) 12.8 KB
) Write word &£
abandon S awfnl
ability
able
about
above

absent
absorb i

A\ M ecorery e
abstract
absurd
abuse x

L]
4 &
- 18

Zero
Zone 2

save list of :
24 words .

Crypto Steel

00000000000 0000
CO06000000P000RP0OO0
P00 C00000000000
=X-1-1-

-X-1-1-1-1-0- 1]

Careful with unused letters ...

On Ledger

When initializing ledger:
e user asked to write down the 24 words
e each word encodes 11 bits (24 x 11 =268 bits)

 list of 2048 words in different languages (sip 39)

Write word &1

awtnl

Beware of “pre-initialized HW wallet”
e 2018: funds transferred to wallet promptly stolen

WD sy
e e

How to securely check balances?

With Ideal: need k, just to check my balance:
* k,needed to generate my addresses (pk,, pk,, pks, ...)
... but k, can also be used to spend funds

* Can we check balances without the spending key ?7?

Goal: two seeds

* k,lives on Ledger: can generate all secret keys (and addresses)
k... liveson laptop/phone wallet: can only generate addresses

pub*
(for checking balance)

Idea 2: (used in HD wallets)

secretseed: k, € {0,1}°¢ ; (ky k,) «— HMAC(k,, “init”)

balance seed: k= (k, h = g')

for all i=1,2,...: {ski +— k, + HMAC(k,, i)

sk, — ok, . JHMAC(k,i) — . AHMAC(K,i)
pki — g g g h-g ' ,

Koup does not reveal sk, sk, ... computed from k
koup: ON laptop/phone, generates unlinkable addresses pk,, pk,, ...

ko: onledger

Pa per wallet (be careful when generating)

aczx.zzygbrbg JuunzdydidTAqoxoadry4t

dHSJdZCoNYSIANPSWGILH9IdSWPXEA99IPIIPA61ADSIAMMLEALS

PUBLIC ADDRESS

PRIVATE KEY

WALLET IMPORT FORMAT

|
g
&
z

DEPOSIT / VERIFY » p—
: 5Jpa7WWYFfSGvi9Fd6td66vBxdmsPr64jrbmFsdUESRK6J2PrSHp
1FAJptoXCby1CtPRpZUnmF3q1g8Kz7X73D ‘

Bitcoin address = base58(hash(PK)) signing key (cleartext)

base58 = a-zA-Z0-9 without {0,0,l,1}

Managing crypto assets: Exchanges

Hot/cold storage

Coinbase: holds customer assets
Design: 98% of assets (SK) are held in cold storage

cold storage (98%) hot wallet (2%)

h,k, SKi ¢)
k(()Z) used to 2% of custome[s
verify cold | assets
storage
balances

t-out-of-n secret sharing of k,

Can’t prove ownership of assets in cold storage,
without accessing cold storage:

* To prove ownership (e.g., in audit or in a proof of solvency)
* To participate in proof-of-stake consensus

Solutions:
* Keep everything in hot wallet (e.g, Anchorage)

* Proxy keys: keys that prove ownership of assets,
but cannot spend assets

END OF LECTURE

Next lecture: consensus

