Ethereum: mechanics

VIR LA #H

Limitations of Bitcoin

Recall: UTXO contains (hash of) ScriptPK
* simple script: indicates conditions when UTXO can be spent

Limitations:
e Difficult to maintain state in multi-stage contracts
» Difficult to enforce global rules on assets

A simple example: rate limiting. My wallet manages 100 UTXOs.
* Desired policy: can only transfer 2BTC per day out of my wallet

An example: NameCoin

Domain name system on the blockchain: [google.com — IP addr]

Need support for three operations:

« Name.new(OwnerAddr, DomainName): intent to register
 Name.update(DomainName, newVal, newOwner, OwnerSig)
 Name.lookup(DomainName)

Note: also need to ensure no front-running on Name.new()

A broken implementation

Name.new() and Name.upate() create a UTXO with ScriptPK:

DUP HASH256 <OwnerAddr> EQVERIFY CHECKSIG VERIFY
<NAMECOIN> <DomainName> <IPaddr> <1> ==

only owner can “spend” this UTXO to update domain data)

Contract: (should be enforced by miners) verity
sig is valid

1

if domain google.com is registered,

. . ensure top
no one else can register that domain

of stack is 1

Problem: this contract cannot be enforced using Bitcoin script

NameCoin: fork of Bitcoin that implements this contract
(see also the Handshake, Chia projects)

Can we build a blockchain that natively supports generic
contracts like this?

= Ethereum ‘

\ 4

Ethereum: enables a world of applications

A world of Ethereum Decentralized apps (DAPPs)

New coins: ERC-20 interface to DAPP

DeFi: exchanges, lending, stablecoins, derivatives, etc.
Insurance

-
DAOs: decentralized organizations n

CryptoPunk #2890

NFTs: Managing distinguished assets (ERC-721 interface)

b
=19
Games, metaverse: assets managed on chain ﬁ’aﬁi

stateofthedapps.com, dapp.review ¢, 30

Bitcoin as a state transition system

world state updated world state
UTXO0, , UTXO,
. uTxo, input ' uTX0, > ..

Tx: UTXO, — UTXO,

Bitcoin rules:

S X |[—=>S

I:bitcoin

S: set of all possible world states, s, € S genesis state
I: set of all possible inputs

Ethereum as a state transition system

Much richer state transition functions

= one transition executes an entire program

Running a program on a blockchain (DAPP)

state, (RPN state, EERPZINN State,

program
code N create a DAPP

compute layer (executed by miners): The EVM

U - U —1\/ C

The Ethereum system

Layer 1 (ETHv1): PoW consensus. Block reward =2 ETH + Tx fees (gas)

Latest Blocks

s avg. block rate = 15 seconds.

Bk

o 1097 Mnar Spark Po ETHv1: variant of Nakamoto PoW

w1008 el il ETHv2: proof of stake consensus

=% Wt

7 i iliviginis about 150 Tx per block.

Ethereum compute layer: the EVM

World state: set of accounts identified by 32-byte address.

Two types of accounts:
(1) owned accounts: controlled by ECDSA signing key pair (PK,SK).
SK signing key known only to account owner

(2) contracts: controlled by code.
code set at account creation time, does not change

Data associated with an account

Account data Owned Contracts

address (computed): H(PK) H(CreatorAddr, CreatorNonce)
code: 1 CodeHash
storage root (state): 1 StorageRoot
balance (in Wei): balance balance (10!8 Wei = 1 ETH)
nonce: nonce nonce

-

 (#Tx sent) + (#accounts created): anti-replay mechanism

Account state: persistent storage

Every contract has an associated storage array S[]:

S[0], S[1], ... , S[2%°®-1]: each cell holds 32 bytes, initto 0.

Account storage root: Merkle Patricia Tree hash of S|]
e Cannot compute full Merkle tree hash: 2%°° leaves

SN 0_- o,
S[000] = a 0 — 10 0 time to compute
S[010] =b o ——L/b root hash:
S[011] =c root 1 <2X|S|
S[110] =d 1 10,d 1 1L.¢C |S| = # non-zero cells

State transitions: Tx and messages

Transactions: signed data by initiator

To: 32-byte address of target (0 — create new account)

From, [Signature]: initiator address and signature on Tx (if owned)
Value: # Wei being sent with Tx

Tx fees (eip1559): gasLimit, maxFee, maxPriorityFee (later)

if To=0: create new contract code = (init, body)

if To#0: data (what function to call & arguments)

nonce: must match current nonce of sender (prevents Tx replay)

State transitions: Tx and messages

Transaction types:

owned — owned: transfer ETH between users

owned — contract: call contract with ETH & data

Example (vlock #10993504)

From To msg.value Tx fee (ETH)

Oxadec1125cef428ae5... ‘ 3] Ox2cebe81feldcd220e... 0 Ether 0.00404405

OxbaZ72130459a119b2... =) Uniswap V2: Router 2 0.14 Ether 0.00644563

89.839104111882671 Ether

2 0.00716
p— -
0x29ecaa773f052d14e 3] CryptoKitties: Core 0 Ether (
0x6 464616964 161a...) Unisw ! Houter 2 0.203036474328481 Ether 0.0076¢

Ixde70238aef7a35abd... ' [2) Balancer: ETH/DOUGH. 0 Ether 0.00261582

QA
(

0Ox69%aca10fe1394d5635¢1... . [5] Ox837d03aa7fc09b8be... 0 Ether 0.00259936

swap V2: Router 2 0 Ether 0.00665809

Messages: virtual Tx initiated by a contract

Same as Tx, but no signature (contract has no signing key)

contract = owned: contract sends funds to user
contract = contract: one program calls another (and sends funds)

One Tx from user: can lead to many Tx processed. Composability!

Tx from owned addr — contract — another contract
L, another contract — different owned

State

14c5f8ba: owned
- 1024 eth
bb75a980: contract
- 5202 eth

if 1contract storage{tx.datal0])
contract.storageltx . data[0]] = tx.datall)

[0, 235235, 0, ALICE

% Value:
10 eth

892bfa2f: contract
- 0 eth

send(tx.value / 3, contract. storage{0])
send{tx.value / 3, contract storage(1])
send(tx.value / 3, contract storagel2])

[ALICE, BOB, CHARLIE]

4096ad65: owned
- 77 eth

Example Tx

Transaction

From:
14c¢c5f8ba

To:
bb75a980

Data:
2,
CHARLIE

Sig:
30452fdedb3d
f7959f2ceb8al

world state (four accounts)

State’

14c5f8ba:
- 1014 eth

bb7ii980:
If 'contractl storage|tx.datai0])

contract storage[tx.datal0]] = tx.datall]

[0, 235235CCHARLIEDALICE ..

892bf92f:
-0 eth

send{tx.value / 3, contract storage[0])
send(tx. value / 3, contract. storageil])
send(tx.value / 3, contract.storage{2])

[ALICE, BOB, CHARLIE]

4096ad65:
- 77 eth

updated world state

An Ethereum Block

Miners collect Txs from users = leader creates a block of n Tx

Miner does:

 fori=1,...,n: execute state change of Tx, sequentially
(can change state of >n accounts)

* record updated world state in block

Other miners re-execute all Tx to verify block

Miners should only build on a valid block
Miners are not paid for verifying block (note: verifier’s dilemma)

Block header data (simplified)

(1) consensus data: parent hash, difficulty, PoW solution, etc.
(2) address of gas beneficiary: where Tx fees will go
(3) world state root: updated world state
Merkle Patricia Tree hash of all accounts in the system
(4) Tx root: Merkle hash of all Tx processed in block
(5) Tx receipt root: Merkle hash of log messages generated in block

(5) Gas used: tells verifier how much work to verify block

The Ethereum blockchain: abstractly

|

accts. accts.
A - Q

e
updated T log updated Tx log
world messages world messages

state state

Amount of memory to run a node (in GB)

=1 TB

ETH total blockchain size: 8.6 TB (Oct. 2021)

An example contract: NameCoin

contract nameCoin { // Solidity code (next lecture)

struct nameEntry {
address owner; // address of domain owner
bytes32 value; //IP address

)

// array of all registered domains
mapping (bytes32 => nameEntry) data;

An example contract: NameCoin

function nameNew(bytes32 name) { e
// registration costs is 100 Wei

if (data[name] == 0 && msg.value >=100) {
data[name].owner = msg.sender //record domain owner
emit Register(msg.sender, name) //log event

1

Code ensures that no one can take over a registered name

Serious bug in this code! Front running. Solved using commitments.

An example contract: NameCoin

function nameUpdate(
bytes32 name, bytes32 newValue, address newOwner) {

// check if message is from domain owner,
// and update cost of 10 Wei is paid

if (data[name].owner == msg.sender && msg.value >=10) {

data[name].value = newValue; // record new value

data[name].owner = newOwner; // record new owner

1

An example contract: NameCoin

function nameLookup(bytes32 name) {

return data[name];

}

} // end of contract

EVM mechanics: execution environment

Write code in Solidity (or another front-end language)

= compile to EVM bytecode
(some projects use WASM or BPF bytecode)

= miners use the EVM to execute contract bytecode
In response to a Tx

The EVM

Stack machine (like Bitcoin) but with JUMP

* max stack depth = 1024

* program aborts if stack size exceeded; miner keeps gas
e contract can create or call another contract

In addition: two types of zero initialized memory

e Persistent storage (on blockchain): SLOAD, SSTORE (expensive)
* Volatile memory (for single Tx): MLOAD, MSTORE (cheap)
 LOGO(data): write data to log

‘ see https://ethervm.io/

Every instruction costs gas, examples:

SSTORE addr (32 bytes), value (32 bytes)

* zero — non-zero: 20,000 gas
* nonh-zero — non-zero: 5,000 gas (for a cold slot)
* non-zero — zero: 15,000 gas refund

Refund is given for reducing size of blockchain state

SELFDESTRUCT addr: kill current contract (in the past: 24,000 gas refund)

CREATE : 32,000 + 200 X (code size) gas CALL gas, addr, value, args

Gas calculation

Why charge gas?
* Tx fees (gas) prevents submitting Tx that runs for many steps.

* During high load: miners choose Tx from the mempool that
maximize their income.

Old EVM: (prior to EIP1559, live on 8/2021)

* Every Tx contains a gasPrice ""bid” (gas - Wei conversion price)

* Miners choose Tx with highest gasPrice (max sum(gasPrice X gasLimit))
= not an efficient auction mechanism (first price auction)

Gas prices spike during congestion

GasPrice in Gwei:
86 Gwei =86 X 102 ETH

86.18

Average Tx fee in USD

Gas calculation: EIP1559

Every block has a “baseFee”:
the minimum gasPrice for all Tx in the block

baseFee is computed from total gas in earlier blocks:

e earlier blocks at gas limit (30M gas) = base fee goes up 12.5% interpolate

" in between

 earlier blocks empty = base fee decreases by 12.5%

If earlier blocks at “target size” (15M gas) = base fee does not change

Gas calculation

EIP1559 Tx specifies three parameters:

e gasLimit: max total gas allowed for Tx

maxFee: maximum allowed gas price (max gas — Wei conversion)
maxPriorityFee: additional “tip” to be paid to miner

Computed gasPrice bid:

gasPrice — min(maxFee, baseFee + maxPriorityFee)

Max Tx fee: gasLimit X gasPrice

Gas calculation

(1) if gasPrice < baseFee: abort
(2) If gasLimit X gasPrice < msg.sender.balance: abort
(3) deduct gasLimit X gasPrice from msg.sender.balance
)
)

(4
(5

set Gas « gasLimit
execute Tx: deduct gas from Gas for each instruction
if at end (Gas < 0): abort, Tx is invalid (miner keeps gasLimit X gasPrice)

(6) Refund Gas X gasPrice to msg.sender.balance

(7) gasUsed + gasLimit — Gas N
(7a) BURN gasUsed X baseFee Ghla
(7b) Send gasUsed X (gasPrice — baseFee) to miner

Burn results in practice

block reward (2ETH) —
Total baseFee burned in block baseFee for block (Wei)

high baseFee period

/

\

high burn

... sometimes burn exceeds block rewards = ETH deflation

‘ watchtheburn.com

Why burn ETH ???

EIP1559 goals (informal):
e users incentivized to bid their true utility for posting Tx,

* miners incentivized to not create fake Tx, and

» disincentivize off chain agreements.

Suppose no burn (i.e., baseFee given to miners):

— in periods of low Tx volume miners would try to increase
volume by offering to refund the baseFee off chain to users.

Note: transactions are becoming more complex

Total Gas Usage

Evolution of the total gas used by the Ethereum network per day

100G

Gas Usage
o
o
©

o

Jan "7 Jul "7 Jan 18 Jul "8 Jan"19 Jul "9 Jan ‘20 Jul 20 Jan ‘21 Jui'21

Gas usage is increasing = each Tx takes more instructions to execute

END OF LECTURE

Next lecture: writing Solidity contracts

