Solidity

World state: set of accounts identified by 32-byte address.

Two types of accounts:
(1) owned accounts: address = H(PK)

(2) contracts: address = H(CreatorAddr, CreatorNonce)

Recap: Transactions

To: 32-byte address (0 — create new account)
From: 32-byte address
Value: # Wei being sent with Tx
Tx fees (eip 1559): gasLimit, maxFee, maxPriorityFee
data: what contract function to call & arguments
if To=0: create new contract code = (init, body)

[signature]: if Tx initiated by an owned account

Recap: Blocks

Miners collect Tx from users:
= run them sequentially on current world state

= new block contains updated world state
and Tx list and log msgs

The Ethereum blockchain: abstractly

|

accts. accts.
A - Q

e
updated T log updated Tx log
world messages world messages

state state

EVM mechanics: execution environment

Write code in Solidity (or another front-end language)

= compile to EVM bytecode
(recent projects use WASM or BPF bytecode)

= miners use the EVM to execute contract bytecode
In response to a Tx

The EVM

Stack machine (like Bitcoin) but with JUMP

In addition: two types of zero initialized memory
* Persistent storage (on blockchain): SLOAD, SSTORE (expensive)
* Volatile memory (for single Tx): MLOAD, MSTORE (cheap)

e LOGO(data) instruction: write data to log

Every EVM instruction costs gas

SSTORE addr (32 bytes), value (32 bytes)

* zero — non-zero: 20,000 gas
* Nnon-zero — non-zero: 5,000 gas
* non-zero — zero: 15,000 gas refund

Refund is given for reducing size of blockchain state

SELFDESTRUCT addr: kill current contract. 24,000 gas refund

CREATE : 32,000 gas CALL gas, addr, value, args

Gas calculation

Why charge gas?
* Tx fees (gas) prevents submitting Tx that runs for many steps.

* During high load: miners choose Tx from the mempool that
maximize their income.

Old EVM: (prior to EIP1559, live on 8/2021)

e Every Tx contains a gasPrice "bid” (gas — Wei conversion price)

* Miners choose Tx with highest gasPrice (max sum(gasPrice X gasLimit))
= not an efficient auction mechanism (first price auction)

Gas prices spike during congestion

GasPrice in Gwei:
86 Gwei =86 X 102 ETH

86.18

Average Tx fee in USD

Gas calculation: EIP1559

Every block has a “baseFee”:
the minimum gasPrice for all Tx in the block

baseFee is computed from total gas in earlier blocks:

e earlier blocks at gas limit (30M gas) = base fee goes up 12.5% interpolate

" in between

 earlier blocks empty = base fee decreases by 12.5%

If earlier blocks at “target size” (15M gas) = base fee does not change

Gas calculation

EIP1559 Tx specifies three parameters:

e gasLimit: max total gas allowed for Tx

maxFee: maximum allowed gas price (max gas — Wei conversion)
maxPriorityFee: additional “tip” to be paid to miner

Computed gasPrice bid:

gasPrice — min(maxFee, baseFee + maxPriorityFee)

Max Tx fee: gasLimit X gasPrice

Gas calculation (simplified)

if gasPrice < baseFee: abort
If gasLimit X gasPrice > msg.sender.balance: abort

set gasLeft « gasLimit
execute Tx: deduct gas from gasLeft for each instruction
if at end (gasLeft < 0): Tx is invalid (miner keeps gasLimit X gasPrice)

)
)
(3) deduct gasLimit X gasPrice from msg.sender.balance
)
)

(6) refund gasLeft X gasPrice to msg.sender.balance

(7) gasUsed « gasLimit — gasLeft N
(7a) BURN gasUsed X baseFee G
(7b) send gasUsed X (gasPrice — baseFee) to miner

Burn results in practice

block reward (2ETH) minus
Total baseFee burned in block baseFee for block (Wei)

high baseFee period

/

\

high burn

... sometimes burn exceeds block rewards = ETH deflation

‘ watchtheburn.com

Mining Reward in ETH

20K

0
Jan'21

Feb '21

Impact on mining rewards

Daily fee mining rewards paid to miners

drop

7/

Mar '21 Apr'21 May '21 Jun ‘21 Jul'21 Aug'21 Sep'21 Oct '21

https://etherchain.org/charts/feeMiningReward

Why burn ETH ???

EIP1559 goals (informal):
e users incentivized to bid their true utility for posting Tx,

* miners incentivized to not create fake Tx, and

» disincentivize off chain agreements.

Suppose no burn (i.e., baseFee given to miners):

— in periods of low Tx volume miners would try to increase
volume by offering to refund the baseFee off chain to users.

Note: transactions are becoming more complex

Total Gas Usage

Evolution of the total gas used by the Ethereum network per day

100G

Gas Usage
o
o
©

o

Jan "7 Jul "7 Jan 18 Jul "8 Jan"19 Jul "9 Jan ‘20 Jul 20 Jan ‘21 Jui'21

Gas usage is increasing = each Tx takes more instructions to execute

Let’s look at the Ethereum blockchain

etherscan.io:
From/to address Tx value

Latest Blocks From Ox8875{31e963d4212/18
To - iz 1 79Q8 R oS ?Aa”

13405036 Miner F2Pool Old
Bk

125 tXNS in 19 secs From Oxcac29d3938e3a8330¢
To O0x7be807

Miner Ethermine
58 secs ago 188 txns in 2 secs From Oxe37b696defft
To Ox

Bk

13405034 Miner 2Miners: PPLNS
Bk i From Ox5786076633

1 min ago 85 tXns ir AL 1LalcL
To 0x7be8076i{deada4ad08

Miner F2Pool Old

1 min ago 2bY tXNS in 61 s&

Bk

Let’s look at a transaction ...

Transaction ID: 0xe3b0c810424edcadd07a00a842e05b4aalea80b13286c8699f ...

From: 0x628ebede3fe7386da04a6f9a37ccb5e980c22ffc

To: Contract 0x1a2a1c938ce3ec39b6d47113c7955baaddd454f2
(Axie Infinity: Ronin Bridge)

Value: 0.167 Ether ($583.16)

Data: Function: depositEthFor
[0]: d256119bb3ca86c7c9fcdaddaba95bd233150e6

Contract generated a virtual Tx to 0xC02aaA39b... value=0.167 ETH

Let’s look at the To contract ...

Contract 0x1a2a1c938ce3ec39b6d47113c7955baa9dd454f2
(Axie Infinity: Ronin Bridge)

Balance: 240.527684887998961173 Ether
Code: 588 lines of solidity

- anyone can read

address public admin;
bool public paused;

modifier onlyAdmin { require(msg.sender ==admin); _; } | gde snippet

function pause() public onlyAdmin whenNotPaused {
paused = true; emit Paused(); }

Remember: contracts cannot keep secrets!

Contract 0x1a2a1c938ce3ec39b6d47113c7955baa9dd454f2
(Axie Infinity: Ronin Bridge) etherscan.io

Read Contract Write Contract
(storage) (see API)

=] Read Contract Information

Anyone can read contract

1. admin
State in Storage array 0Ox23d48177171cd407ee8266dc45f4fB8alcech338fa address
= never store secret keys —
in contract! Faise bool

Solidity variables
stored in S[] array

Solidity

docs: https://solidity.readthedocs.io/en/v0.8.9/

IDE: https://remix-ide.readthedocs.io/en/latest/#

Contract structure

contract IERC20Token {
function transfer(address _to, uint256 value) external returns (bool);

function totalSupply() external view returns (uint256);

}

contract ERC20Token is IERC20Token { // inheritance
address owner;
constructor() public { owner = msg.sender; }
function transfer(address _to, uint256 _value) external returns (bool) {
.. implentation ...

Value types

® uint256
® address (bytes32)
O address. balance, _address. send (value),
_address. transfer (value)
O call: send Tx to another contract

bool success = _address.call(data).value(amount).gas(amount);

O delegatecall: load code from another contract into current context
® bytes32

® bool

Reference types

structs
arrays
bytes
strings

mappings:

® Declaration:

® Assignment:

struct Person {
uintl28 age;
uint128 balance;
address addr;

}
Person[10] public people;

mapping (address => unit256) balances;

balances|[addr]

value:

Globally available variables

® block: .blockhash, .coinbase, .difficulty, .gaslimit, .number,
. timestamp
A—-B—>C—D:
® gaslLeft() atD: msg.sender ==
tx.origin ==
® msg: .data, .sender, .sig, .value
® tx: .gasprice, .origin

® Keccak256(), sha256()] sha3()

® require, assert e.g.: require (msg. value > 100, “insufficient

Function visibilities

external: function can only be called from outside contract.
Arguments read from calldata

public: function can be called externally and internally.
Arguments copied from calldata to memory

private: only visible inside contract

internal: only visible in this contract and contracts deriving from it

view: only read storage (no writes to storage)

pure: does not touch storage

function f(uint a) private pure returns (uint b) { returna + 1; }

contract SafeMath {

US ing import S function safeAdd(uint256 a, uint256 b)

internal pure returns (uint256 c)

{

c=a+b;
® I[nheritance require(c >=a, “UINT256_OVERFLOW");
1

O contract A is SafeMath {}

O uint256 a = safeAdd(b, c¢):

O SafeMath code is compiled into the A contract

library SafeMath {

US ing import S function safeAdd(uint256 a, uint256 b)

internal pure returns (uint256 c)
{

c=a+b;
® Inheritance require(c >=a, “UINT256_OVERFLOW");
1

O contract A is SafeMath {}

O uint256 a = safeAdd(b, c¢):

O SafeMath code is compiled into the A contract

e Libraries
O contract A { using SafeMath for uint256; }
O uint256 a = b.safeAdd(c);

ERC20 tokens

® https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

® A standard API for fungible tokens that provides basic functionality to transfer

tokens or allow the tokens to be spent by a third party.

® An ERC20 token is itself a smart contract that maintains all user balances:

mapping(address => uint256) internal balances;

® A standard interface allows other contracts to interact with every ERC20 token.

No need for special logic for each token.

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

ERC20 token interface

® function transfer(address to, uint256 value) external returns (bool);

® function transferFrom(address from, address to, uint256 value) external

returns (bool) :

® function approve (address spender, uint256 value) external returns (bool);

® function totalSupply () external view returns (uint256)
® function balanceOf (address owner) external view returns (uint256) ;

® function allowance (address owner, address spender) external view returns

How are ERC20 tokens transferred?

contract ERC20Token is IERC20Token {
mapping (address => uint256) internal balances;

function transfer(address _to, uint256 _value) external returns (bool) {
require(balances[msg.sender] >= _value, "ERC20 INSUFFICIENT BALANCE");
require(balances[_to] + _value >= balances[_to], "UINT256_OVERFLOW”);

balances[msg.sender] —= _value;
balances[_to] += _value;

emit Transfer(msg.sender, _to, value); // write log message
return true;

1

Tokens can be minted by a special function mint(address _to, uint256 _value)

ABI encoding and decoding

Every function has a 4 byte selector that is calculated as
the first 4 bytes of the hash of the function signature.
@® In the case of transfer , this looks like
bytes4 (keccak256 (“transfer (address, uint256)”) ;

The function arguments are then ABI encoded into a single byte array and concatenated
with the function selector. ABI encoding simple types means left padding each argument
to 32 bytes.

This data is then sent to the address of the contract, which is able to decode the

arguments and execute the code.

Functions can also be implemented within the fallback function

Calling other contracts

® Addresses can be cast to contract types.
address token;
IERC20Token tokenContract = IERC20Token(token) ;
ERC20Token tokenContract = ERC20Token (_token) ;

® Vhen calling a function on an external contract, Solidity will
automatically handle ABI encoding, copying to memory, and copying
return values.

O tokenContract. transfer(to, value):

Gas cost considerations

® Everything costs gas, including processes that are happening under

the hood (ABI decoding, copying variables to memory, etc).

Considerations in reducing gas costs:
® How often to we expect a certain function to be called? Is the

bottleneck the cost of deploying the contract or the cost of each

individual function call?

® Are the variables being used in calldata, the stack, memory, or

storage?

Stack variables

® Stack variables are generally the cheapest to use and can be used
for any simple types (anything that is <= 32 bytes).
O uint25h6 a = 123;
® All simple types are represented as bytes32 at the EVM level.

® Only 16 stack variables can exist within a single scope.

Calldata

® (Calldata is a read-only byte array.

® Every byte of a transaction’ s calldata costs gas
(68 gas per non-zero byte, 4 gas per zero byte).
O All else equal, a function with more arguments (and larger calldata) will

cost more gas.

® [t is cheaper to load variables directly from calldata, rather than copying them
to memory.
O For the most part, this can be accomplished by marking a function as

“external .

Memory

® Memory is a byte array.
® Complex types (anything > 32 bytes such as structs, arrays, and
strings) must be stored in memory or in storage.

string memory name = “Alice” ;

® Memory is cheap, but the cost of memory grows quadratically.

Storage

® Using storage is very expensive and should be used sparingly.

® Vriting to storage 1s most expensive. Reading from storage 1is

cheaper, but still relatively expensive.
® mappings and state variables are always in storage.
® Some gas is refunded when storage is deleted or set to 0

® Trick for saving has: variables < 32 bytes can be packed into 32

byte slots.

Event logs

® Event logs are a cheap way of storing data that
does not need to be accessed by any contracts.

® Events are stored in transaction receipts, rather than in storage.

Security considerations

® Are we checking math calculations for overflows and underflows?

® Vhat assertions should be made about function inputs, return values,

and contract state?
® VWho is allowed to call each function?

® Are we making any assumptions about the functionality of external

contracts that are being called?

Re-entrency bugs

contract Bank({
mapping(address=>uint) userBalances;

function getUserBalance(address user) constant public returns(uint) {
return userBalances[user]; }

function addToBalance() public payable {
userBalances[msg.sender] = userBalances[msg.sender] + msg.value; }

// user withdraws funds
function withdrawBalance() public {

uint amountToWithdraw = userBalances[msg.sender];

// send funds to caller ... vulnerable!
if (msg.sender.call().value(amountToWithdraw) == false) { throw; }
userBalances[msg.sender] = 0;

b}

contract Attacker {
uint numlterations;
Bank bank;

function Attacker(address _bankAddress) { // constructor
bank = Bank(_bankAddress);
numlterations = 10;
if (bank.value(75).addToBalance() == false) { throw; } // Deposit 75 Wei
if (bank.withdrawBalance() == false) {throw; } // Trigger attack

I

function () { // the fallback function
if (numlterations > 0) {
numlterations --; // make sure Tx does not run out of gas
if (bank.withdrawBalance() == false) { throw; }

Pl

Why is this an attack?

(1) Attacker = Bank.addToBalance(75)
(2) Attacker = Bank.withdrawBalance —
Attacker.fallback = Bank.withdrawBalance —

Attacker.fallback = Bank.withdrawBalance — ...

withdraw 75 Wei at each recursive step

function withdrawBalance() public {
uint amountToWithdraw = userBalances[msg.sender];

userBalances[msg.sender] = 0;

if (msg.sender.call.value(amountToWithdraw)() == false) {
userBalances[msg.sender] = amountToWithdraw;
throw;

END OF LECTURE

Next lecture: DeFi contracts

