
LECTURE # 7

QUALITY ASSURANCE

chenbo@etao.net

6/21/20251

SOFTWARE QUALITY Assurance & Test

Summary of Previous Lecture
 Quality Models

ISO 9126

McCall’s

 FURPS

 Boehm’s

 GQM

 Cost of Quality

 Prevention Cost

 Appraisal Cost

 Failure Cost

 Quality Cost Conformance Model

6/21/20252

Quality Cost Conformance

Model

6/21/20253

 The quality cost conformance model provides an example of a

constrained optimization approach. In this model the economic

conformance level (ECL) is obtained where prevention and

appraisal costs are equal to external and internal failure costs.

 Prevention and appraisal costs increase as the level of

conformance of quality increases.

 Failure costs are expected to decrease as the level of

conformance of quality increases. Therefore, the total costs

associated with conformance of quality will be U-shaped as

indicated in the figure.

The Quality Cost Conformance Model

6/21/20254

Repair Cost of Defects

6/21/20255

Topics to Cover - Today

6/21/20256

 Quality Assurance

 Qualification Scheme for Quality Assurance

Defect prevention

Defect Reduction

Defect Containment

Quality Assurance

6/21/20257

 Quality assurance can be defined as, „the establishment of framework of
organizational procedures and standards that lead to a high quality software‟

 Quality assurance is the function responsible for managing quality. The word
“assurance” means that if the processes are followed, management can be assured of
product quality.

 About quality assurance:

The first formal quality assurance and control function was introduced at Bell Labs in
1916 in the manufacturing world.

During the 1950s and 1960s, the programmers controls their product quality.

During the 1970s, quality assurance standards were introduced first in military contract
software development.

Classification Scheme for QA as Dealing with Defects

6/21/20258

 Defect Prevention

 Defect Reduction

(Defect Detection and Removal)

 Defect Containment

Defect Prevention

6/21/20259

 Prevent faults from being injected into the software through error blocking or

error source removal

 Eliminating certain error sources, such as correcting human misconceptions

 We can analyze the reasons behind the missing or incorrect human actions and deal

with the root causes or the error sources instead. This generic approach is called

error source removal.

 The focus of these activities is typically on the people and their conceptual

mistakes, which may lead to the selection and use of inappropriate development

methodologies, languages, algorithms, QA strategies, etc. Such inappropriate

selection may lead to numerous fault injections.

Defect Prevention Techniques

6/21/202510

 Education and training

 Process conformance and standards

enforcement

 Tools/technologies and techniques

Education and Training

6/21/202511

 Education and training of software professionals can help them control, manage,

and improve the way they work. Such activities helps to ensure that they have few

if any misconceptions related to the product and the product development.

 The elimination of these human misconceptions will help prevent certain types of

fault from being injected into

software products.

Education and Training

6/21/202512

The education and training effort for error source elimination should focus on the
following areas:

 Product and domain specific knowledge
 If the people involved are not familiar with the product type or application

domain, there is a good chance that wrong solutions
will be implemented

 Knowledge about the specific development/testing tools used by
the organization
 Also plays an important role in developing high- quality software products.

 General Software Development Knowledge and expertise
 It plays an important role in developing high quality software products.

 For example lack of expertise with requirements analysis and product
specification usually leads to many problems and rework in design, coding
and testing phases

 Development Process Knowledge used by the organization
 For example if the people involved in incremental software development do not

know how the individual development efforts for different increments fit
together, the uncoordinated development may lead to many interface or
interaction problems.

Tools/Technologies and Techniques

6/21/202513

 Appropriate use of software methodologies can also
help reduce the chances of fault injections. Many of
the problems with low quality “fat software” could
be addressed by disciplined methodologies and
return to essentials for high quality “Lean software”

 Specific software tools can also help reduce the
chances of fault injections. For example Syntax
directed editor that automatically balances out each
open parenthesis, “{”, with a close parenthesis, “}”,
can help reduce syntactical problems in programs
written in the C language

Defect Reduction

6/21/202514

 Defect reduction through fault detection and removal

Detect and remove faults once they have been injected

Two categories:

 Static Testing

(Inspection of software code, design etc., Reviews, Walkthroughs, desk

checking etc)

 Dynamic Testing

Test a program by executing test scripts e.gWhite box testing, black box

testing etc.

Static Testing

6/21/202515

Inspection

 Software Inspections are critical examinations of software artifacts

(code/design/test-cases/etc.) by human inspectors aimed at discovering and fixing

faults in the software system

 The basic idea of inspections are listed below:

Inspections are critical reading and analysis of software code or other software artifacts,

such as requirements, designs, test plans, etc.

Inspections are typically conducted by multiple human inspectors, through some

coordination process.

Faults are detected directly in inspection by human inspectors, either during their

individual inspection or various types of group sessions.

Static Testing

6/21/202516

 Identified faults need to be removed as a result of the inspection process, and their

removal also needs to be verified.

 The inspection processes include some planning and follow-up activities.

Static Testing

6/21/202517

Walkthroughs

 The code walkthrough, like the inspection, is a set of procedures and error detection

techniques for group code reading. It shares much in common with the inspection process,

but the procedures are slightly different, and a different error-detection technique is

employed.

Desk Checking

 A desk check can be viewed as a one-person inspection or walkthrough: A person reads a

program, checks it with respect to an error list, and/or walks test data through it.

Dynamic Testing

6/21/202518

 Testing is one of the most important parts of QA and the most commonly
performed QA activity

 Dynamic Testing involves the execution of software and the observation of the
program behavior or outcome

Dynamic Testing

6/21/202519

 black-box/functional testing

verifies the correct handling of the external functions provided by the software or whether the
observed behavior conforms to user expectations or product specifications

The emphasis is on reducing the chances of encountering functional problems by
target customers.

 white/clear-box/structural testing

verifies the correct implementation of internal units, structures and relations among them

When white box testing is performed ,failures related to internal implementations
can be observed, leading to corresponding faults being detected and removed.

Defect Containment

6/21/202520

Defect Containment

6/21/202521

 Defect containment through failure prevention and

containment

Containing the failures to local areas

Limiting the damage

 Fault tolerance techniques to break the causal relation between faults and failures

so that local faults will not cause global failures, thus “tolerating” these local faults

 Failure Containment measures to avoid catastrophic consequences, such as death,

personal injury and severe things in case of failures

Defect Containment

6/21/202522

 Software defects cannot be eliminated completely because of the large size and high

complexity of software systems in use today.

 The remaining faults may be triggered under rare conditions or unusual dynamic

scenarios, making it unrealistic to attempt to generate the huge number of test

cases to cover all these conditions or to perform exhaustive inspection based on all

possible scenarios.

 Break the causal relation between these faults and the resulting failures, thus

“tolerating” these faults or “contain” the failures by reducing the resulting

damage

Software Fault Tolerance

6/21/202523

 Fault-tolerance or graceful degradation is the property that enables a system to

continue operating properly in the event of the failure of some of its components. If its

operating quality decreases, the decrease is proportional to the severity of the failure.

 Software fault tolerance makes the assumption that the system has unavoidable and

undetectable faults and aims to make provisions for the system to operate correctly even

in the presence of faults.

 Using a variety of Software methods, faults are detected and recovery is accomplished

 All fault tolerance activities are based on redundancy either for detection and recovery

 The process of fault tolerance involves many defined stages, from the phase of errors

detection, through the confinement phase and evaluation of the propagation of erroneous

information until the recovery phase

Software Fault Tolerance

6/21/202524

 Error Detection

A starting point of fault tolerance technique, you have to implement verification tests to detect
errors in the applications

The redundancy exists in this approach is active redundancy

Active redundancy is a design concept, in fault tolerance it is the use of redundant elements
operating simultaneously to prevent, or permit recovery from failures thus increases
operational availability

 Forms of Redundancy
 Hardware

 Software

 Time

 Information

Software Fault Tolerance- Error Detection Approaches

6/21/202525

 Replication

 In these tests the copies of the system are used

 Checks the outputs while submitting the same inputs

 In case the results are distinct, a mistake is detected

 Temporal

These tests watch for measurement of an interval of time expected

 Mistake is detected in case watch expires without system shows any response

Software Fault Tolerance-Recovery Types

6/21/202526

 Backward Recovery

This recovery type undoes the executed actions and its come back to the consistent
state which already has past, in a way to continue starting from that point.

 The backward recovery process demands the establishment of a point, during the
execution of the system, denominated recovery point, which is responsible for the
preservation of appropriate information for subsequent recovery, in case of error.

 Forward Recovery

The forward recovery acts when an abnormal state is detected with the
suspension of the processing to that more favorable conditions are found

 This recovery type ignores part or the whole work, and it continues with
what it is supposed correct, it corrects the erroneous behavior for the
sending of compensation information

Software Fault Tolerance-Fault Injection for Fault Tolerance

Assessment

6/21/202527

 Software Fault Injection is the process of testing software under

anomalous/abnormal circumstances involving erroneous/invalid external inputs

 The main objective is to test the fault tolerance capability through injecting faults

into the system and analyze if the system can detect and recover from faults as

specified by the system

 The results can lead to either fixing of individual software bugs or discovery of

design deficiencies in system fault tolerance

Software Fault Tolerance Techniques-Data & Design

Diversity

6/21/202528

 Multiple data representation environment:

 Data diverse techniques are used in a multiple data representation

environment

 Utilize different representations of input data to provide

tolerance to software design faults

 Multiple version software environment:

 Design diverse techniques are used in a multiple version software

environment

 Use the functionality of independently developed software

versions to provide tolerance to software design faults

Software Fault Tolerance Techniques-Data & Design

Diversity

6/21/202529

 Two or more variants of software developed by different teams but to a common

specification are used.

 These variants are then used in a time or space redundant manner to achieve fault

tolerance.

 Disadvantages of design diversity is the high cost involved in developing multiple

variants of software

Software Fault Tolerance Techniques-Data & Design

Diversity

6/21/202530

 Popular techniques which are based on the design diversity
concept for fault tolerance in software are:

 Recovery Block

 N-Version Programming

 N-Self-Checking Programming

Design Diversity technique

6/21/202531

 Recovery Blocks

 It was introduced in 1974 by Horning, with early implementations

developed by Randell in 1975 and Hecht in 1981

 Recovery blocks use repeated executions (or redundancy over

time) as the basic mechanism for fault tolerance.

 The basic recovery block is related to sequential systems

 Several alternatives are proposed for a certain block of

instructions, incase of mistake there will be activation of

alternatives one at a time under acceptance routine until the

correct execution or error message

Design Diversity technique

6/21/202532

 Recovery Blocks

A recovery block consists of a conventional block which is provided with a means of

error detection (an acceptance test), Primary alternate and zero or more stand-by

spares (the additional alternates).A possible syntax for recovery blocks is as follows:

 ensure acceptance test

 by primary alternate

 else by alternate 2

 else by alternate n

 else error

Design Diversity technique

6/21/202533

 Recovery Blocks

 The primary alternate corresponds exactly to the block
of the equivalent conventional program, and is entered
to perform the desired operation. The acceptance
test, which is a logical expression is evaluated on
exit to determine whether the alternate has
performed acceptably.

 A further alternate, if one exists, is entered if the
preceding alternate fails to complete (e.g.,
because it attempts to divide by zero, or exceeds
a time limit), or fails the acceptance test.

 However before an alternate is so entered, the
state of the process is restored to that current
just before entry to the primary alternate.

Design Diversity technique

6/21/202534

 N Version Programming (NVP)

NVP was suggested by Elmendorf in 1972 and developed by Avizienis and Chen in
1977–1978

NVP uses parallel redundancy, where N copies each of a different version (variants), of
programs fulfilling the same functionality are running in parallel to fulfill the same
requirement and the decision of output correctness is based on comparisons of all
outputs.

The decision algorithm (voter) selects the correct output

 The principle objective of N-Version Programming is to mask the effects of software
flaws in the exits of the module

Design Diversity technique

6/21/202535

 N Version Programming (NVP)

Compared with RcB, NVP is s a static technique. That means a task: is executed by

several processes or programs and a result is accepted only if it is judged as an

acceptable result, usually via a majority vote.

Voter is the fundamental difference between NVP and RB

The decision algorithm in NVP makes sure that local failures in limited number of these

parallel versions will not compromise global execution results

Since the entire versions are built to satisfy the same requirement, N version

programming thus requires considerable development effort

Design Diversity technique

6/21/202536

 N Version Programming (NVP)

General syntax:
run Version 1, Version 2,
..., Version n
if (Decision Mechanism
(Result1, Result2,..., Result
n))
return Result
else failure exception

Design Diversity technique

6/21/202537

 N Self Check Programming
 N Self Checking programming is the use of multiple software versions combined with

structural variations of the Recovery Blocks and NVP.

 N Self Checking programming using acceptance tests is shown on Figure.

 Here the versions and the acceptance tests are developed independently from common

requirements. This use of separate acceptance tests for each version is the main

difference of this N Self Checking model from the Recovery Blocks approach.

 Similar to Recovery Blocks, execution of the versions and their tests can be done

sequentially or in parallel but the output is taken from the highest-ranking version that

passes its acceptance test.

Data Diversity technique

6/21/202538

 Data diversity, a technique for fault tolerance in software, was introduced by Amman and
Knight.

 While the design diversity approaches to provide fault tolerance, rely on multiple versions
of the software written to the same specifications, the data diversity approach uses only
one version of the software.

 This approach relies on the observation that a software sometime fails for certain values in
the input space and this failure could be averted if there is a minor change of input data
which is acceptable to the software.

 This technique is cheaper to implement than the design diversity technique.

 Popular techniques which are based on the data diversity concept for fault tolerance in
software are:
Retry Blocks
N-Copy Programming

Data Diversity technique

6/21/202539

 Retry Blocks
 A retry block developed by Ammann and Knight [Ammann and Knight 1987; Ammann

and Knight 1988] is a modification of the recovery block scheme that uses data
diversity instead of design diversity.

 Data diversity is a strategy that does not change the algorithm of the system (just
retry), but does change the data that the algorithm processes. It is assumed that there
are certain data which will cause the algorithm to fail, and that if the data were re-
expressed in a different, equivalent (or near equivalent) form the algorithm would
function correctly.

 A retry block executes the single algorithm normally and evaluates the acceptance
test.

 If the test passes, the retry block is complete. If the test fails, the algorithm executes
again after the data has been re-expressed.

Data Diversity technique

6/21/202540

General syntax:
ensure Acceptance Test
by Primary Algorithm (Original Input)
else by Primary Algorithm (Re-expressed Input)
else by Primary Algorithm (Re-expressed Input)
...
... [Deadline Expires]
else by Backup Algorithm (Original Input)
else failure exception

 The RtB syntax above states that the technique will first attempt to ensure the AT
by using the primary algorithm.

 If the primary algorithm’s result does not pass the AT, then the input data will be re
expressed and the same algorithm attempted until a result passes the AT or the
deadline expires.

 If the deadline expire, the backup algorithm is invoked with the original inputs.

 If this backup algorithm is not successful, an error occurs.

Data Diversity technique

6/21/202541

 N Copy Programming

N Copy Programming (NCP) is the data diverse

variant of NVP

The Technique use one or more Data re-

expression algorithm’s (DRA’s) and at least two

copies of a program

The system inputs are run through the DRA(s) to

re-express the inputs.

The copies execute in parallel using the re-

expressed data as input.

A DM examines the results of the copy executions

and selects the “best” result, if one exists.

Data Diversity technique

6/21/202542

The basic NCP technique consists of an executive, 1 to n DRA, n copies of the program
or function,
and a DM. The executive orchestrates the NCP technique operation, which has the
general syntax:
run DRA 1, DRA 2, ..., DRA n
run Copy 1(result of DRA 1),
Copy 2(result of DRA 2), ...,
Copy n(result of DRA n)
if (Decision Mechanism (Result 1, Result 2, ...,Result n))
return Result
else failure exception

The NCP syntax above states that the technique first runs the DRA concurrently to
re-express the input data, then executes the n copies concurrently.
The results of the copy executions are provided to the DM, which operates upon the results
to determine if a correct result can be adjudicated/judged/decided/resolved.
If one can (i.e., the Decision Mechanism statement above evaluates to TRUE), then it is returned.
If a correct result cannot be determined, then an error occurs.

Decision Mechanism

6/21/202543

 Voters

Voters compare the results from two or more variants

 If there are two results to examine, the decision mechanism is called the comparator

The Voter decides the correct results if any exists

 Acceptance Tests

Verification of the last instance

Not important to know which alternative generates the results but necessary that these are
inside the acceptance limit

Must be Simpler

 If not projected conveniently then two flaws occurs
Disregard of correct alternative

 Acceptance of incorrect alternative

Failure Containment

6/21/202544

 With all the fault prevention and fault tolerant techniques, unfortunately, we will

still have faults. In that case, can we

(a) “prevent accidents” ? and can we

(b) “reduce the damage of the accidents”?

 We already know that we can not prevent all accidents. But we can analyze the

hazards of an accident and hopefully contain or limit the damage.

Software Fault Tolerance Techniques-Data & Design

Diversity

6/21/202545

 Multiple data representation environment:

 Data diverse techniques are used in a multiple data representation

environment

 Utilize different representations of input data to provide

tolerance to software design faults

 Multiple version software environment:

 Design diverse techniques are used in a multiple version software

environment

 Use the functionality of independently developed software

versions to provide tolerance to software design faults

Software Fault Tolerance Techniques-Data & Design

Diversity

6/21/202546

 Two or more variants of software developed by different teams but to a common

specification are used.

 These variants are then used in a time or space redundant manner to achieve fault

tolerance.

 Disadvantages of design diversity is the high cost involved in developing multiple

variants of software

Software Fault Tolerance Techniques-Data & Design

Diversity

6/21/202547

 Popular techniques which are based on the design diversity
concept for fault tolerance in software are:

 Recovery Block

 N-Version Programming

 N-Self-Checking Programming

Design Diversity technique

6/21/202548

 Recovery Blocks

 It was introduced in 1974 by Horning, with early implementations

developed by Randell in 1975 and Hecht in 1981

 Recovery blocks use repeated executions (or redundancy over

time) as the basic mechanism for fault tolerance.

 The basic recovery block is related to sequential systems

 Several alternatives are proposed for a certain block of

instructions, incase of mistake there will be activation of

alternatives one at a time under acceptance routine until the

correct execution or error message

Design Diversity technique

6/21/202549

 Recovery Blocks

A recovery block consists of a conventional block which is provided with a means of

error detection (an acceptance test), Primary alternate and zero or more stand-by

spares (the additional alternates).A possible syntax for recovery blocks is as follows:

 ensure acceptance test

 by primary alternate

 else by alternate 2

 else by alternate n

 else error

Design Diversity technique

6/21/202550

 Recovery Blocks

 The primary alternate corresponds exactly to the block
of the equivalent conventional program, and is entered
to perform the desired operation. The acceptance
test, which is a logical expression is evaluated on
exit to determine whether the alternate has
performed acceptably.

 A further alternate, if one exists, is entered if the
preceding alternate fails to complete (e.g.,
because it attempts to divide by zero, or exceeds
a time limit), or fails the acceptance test.

 However before an alternate is so entered, the
state of the process is restored to that current
just before entry to the primary alternate.

Design Diversity technique

6/21/202551

 N Version Programming (NVP)

NVP was suggested by Elmendorf in 1972 and developed by Avizienis and Chen in
1977–1978

NVP uses parallel redundancy, where N copies each of a different version (variants), of
programs fulfilling the same functionality are running in parallel to fulfill the same
requirement and the decision of output correctness is based on comparisons of all
outputs.

The decision algorithm (voter) selects the correct output

 The principle objective of N-Version Programming is to mask the effects of software
flaws in the exits of the module

Design Diversity technique

6/21/202552

 N Version Programming (NVP)

Compared with RcB, NVP is s a static technique. That means a task: is executed by

several processes or programs and a result is accepted only if it is judged as an

acceptable result, usually via a majority vote.

Voter is the fundamental difference between NVP and RB

The decision algorithm in NVP makes sure that local failures in limited number of these

parallel versions will not compromise global execution results

Since the entire versions are built to satisfy the same requirement, N version

programming thus requires considerable development effort

Design Diversity technique

6/21/202553

 N Version Programming (NVP)

General syntax:
run Version 1, Version 2,
..., Version n
if (Decision Mechanism
(Result1, Result2,..., Result
n))
return Result
else failure exception

Design Diversity technique

6/21/202554

 N Self Check Programming
 N Self Checking programming is the use of multiple software versions combined with

structural variations of the Recovery Blocks and NVP.

 N Self Checking programming using acceptance tests is shown on Figure.

 Here the versions and the acceptance tests are developed independently from common

requirements. This use of separate acceptance tests for each version is the main

difference of this N Self Checking model from the Recovery Blocks approach.

 Similar to Recovery Blocks, execution of the versions and their tests can be done

sequentially or in parallel but the output is taken from the highest-ranking version that

passes its acceptance test.

Data Diversity technique

6/21/202555

 Data diversity, a technique for fault tolerance in software, was introduced by Amman and
Knight.

 While the design diversity approaches to provide fault tolerance, rely on multiple versions
of the software written to the same specifications, the data diversity approach uses only
one version of the software.

 This approach relies on the observation that a software sometime fails for certain values in
the input space and this failure could be averted if there is a minor change of input data
which is acceptable to the software.

 This technique is cheaper to implement than the design diversity technique.

 Popular techniques which are based on the data diversity concept for fault tolerance in
software are:
Retry Blocks
N-Copy Programming

Data Diversity technique

6/21/202556

 Retry Blocks
 A retry block developed by Ammann and Knight [Ammann and Knight 1987; Ammann

and Knight 1988] is a modification of the recovery block scheme that uses data
diversity instead of design diversity.

 Data diversity is a strategy that does not change the algorithm of the system (just
retry), but does change the data that the algorithm processes. It is assumed that there
are certain data which will cause the algorithm to fail, and that if the data were re-
expressed in a different, equivalent (or near equivalent) form the algorithm would
function correctly.

 A retry block executes the single algorithm normally and evaluates the acceptance
test.

 If the test passes, the retry block is complete. If the test fails, the algorithm executes
again after the data has been re-expressed.

Data Diversity technique

6/21/202557

General syntax:
ensure Acceptance Test
by Primary Algorithm (Original Input)
else by Primary Algorithm (Re-expressed Input)
else by Primary Algorithm (Re-expressed Input)
...
... [Deadline Expires]
else by Backup Algorithm (Original Input)
else failure exception

 The RtB syntax above states that the technique will first attempt to ensure the AT
by using the primary algorithm.

 If the primary algorithm’s result does not pass the AT, then the input data will be re
expressed and the same algorithm attempted until a result passes the AT or the
deadline expires.

 If the deadline expire, the backup algorithm is invoked with the original inputs.

 If this backup algorithm is not successful, an error occurs.

Data Diversity technique

6/21/202558

 N Copy Programming

N Copy Programming (NCP) is the data diverse

variant of NVP

The Technique use one or more Data re-

expression algorithm’s (DRA’s) and at least two

copies of a program

The system inputs are run through the DRA(s) to

re-express the inputs.

The copies execute in parallel using the re-

expressed data as input.

A DM examines the results of the copy executions

and selects the “best” result, if one exists.

Data Diversity technique

6/21/202559

The basic NCP technique consists of an executive, 1 to n DRA, n copies of the program
or function,
and a DM. The executive orchestrates the NCP technique operation, which has the
general syntax:
run DRA 1, DRA 2, ..., DRA n
run Copy 1(result of DRA 1),
Copy 2(result of DRA 2), ...,
Copy n(result of DRA n)
if (Decision Mechanism (Result 1, Result 2, ...,Result n))
return Result
else failure exception

The NCP syntax above states that the technique first runs the DRA concurrently to
re-express the input data, then executes the n copies concurrently.
The results of the copy executions are provided to the DM, which operates upon the results
to determine if a correct result can be adjudicated/judged/decided/resolved.
If one can (i.e., the Decision Mechanism statement above evaluates to TRUE), then it is returned.
If a correct result cannot be determined, then an error occurs.

Decision Mechanism

6/21/202560

 Voters

Voters compare the results from two or more variants

 If there are two results to examine, the decision mechanism is called the comparator

The Voter decides the correct results if any exists

 Acceptance Tests

Verification of the last instance

Not important to know which alternative generates the results but necessary that these are
inside the acceptance limit

Must be Simpler

 If not projected conveniently then two flaws occurs
Disregard of correct alternative

 Acceptance of incorrect alternative

Failure Containment

6/21/202561

 With all the fault prevention and fault tolerant techniques, unfortunately, we will

still have faults. In that case, can we

(a) “prevent accidents” ? and can we

(b) “reduce the damage of the accidents”?

 We already know that we can not prevent all accidents. But we can analyze the

hazards of an accident and hopefully contain or limit the damage.

Fault Tree Analysis

6/21/202562

 Fault Tree Analysis (FTA) was originally developed in 1962 at Bell Laboratories by

H.A. Watson, under a U.S. Air Force Ballistics Systems Division contract to

evaluate the Minuteman I Intercontinental Ballistic Missile (ICBM) Launch Control

System

 Fault tree analysis (FTA) is a top down, deductive failure analysis in which an

undesired state of a system is analyzed using Boolean logic to combine a series of

lower-level events. This analysis method is mainly used in the field of safety

engineering and Reliability engineering to determine the probability of a safety

accident or a particular system level (functional) failure.

The Fault Tree

6/21/202563

 Begin Fault Analysis by identifying possible failures in design operation or
maintenance

 Next build a graph whose nodes are failures
 Single contents

 System function

 Entire system

 Edge = relationship among nodes by logical descriptor (AND,OR)

The Fault Tree

6/21/202564

Figure 5.19 Portion of power plant control system

The Fault Tree

6/21/202565

Figure: Demonstration of FTA

Fault Tree Analysis

6/21/202566

 list the set of events that cause the “accident” or “failure”

 build an upside down tree that logically connects the events to the failure

Fault tree Analysis

6/21/202567

Figure: Illustration of FTA security of software application by using controlled access

Containment

6/21/202568

 We use the fault-tree to analyze and understand the cause of the “accident.” We may

use it for:

Accident elimination

Accident reduction

Accident control

References

6/21/202569

1. http://www.sqa.net/index.htm

2. Software Engineering by Roger Pressman

3. Software Quality Engineering: Testing, Quality Assurance, and Quantifiable Improvement: JEFF TIAN, 2005.

4. The Art of Software Testing by Glenford Myers

5. http://en.wikipedia.org/wiki/Black-box_testing

6. http://en.wikipedia.org/wiki/White-box_testing

7. http://www.cs.rutgers.edu/~rmartin/teaching/spring03/cs553/papers01/06.pdf

8. http://www.hillside.net/plop/2009/papers/Process/N-Version%20Programming.pdf

9. http://en.wikipedia.org/wiki/Active_redundancy

10. http://en.wikipedia.org/wiki/Fault-tolerant_system

11. https://www.google.com.pk/search?hl=en&noj=1&q=active+redundancy&tbs=dfn:1&tbo=
u&sa=X&ei=s1BhUMmnAaOn4gTpuIGABw&ved=0CB0QkQ4&biw=1366&bih=624

12. http://en.wikipedia.org/wiki/Fault_tree_analysis

13. http://www.pld.ttu.ee/IAF0030/Paper_4.pdf

14. http://www.isixsigma.com/tools-templates/risk-management/using-fault-tree-analysis-improve-software-testing/

http://www.sqa.net/index.htm
http://en.wikipedia.org/wiki/Black-box_testing
http://en.wikipedia.org/wiki/White-box_testing
http://www.cs.rutgers.edu/~rmartin/teaching/spring03/cs553/papers01/06.pdf
http://www.hillside.net/plop/2009/papers/Process/N-Version Programming.pdf
http://en.wikipedia.org/wiki/Active_redundancy
http://en.wikipedia.org/wiki/Fault-tolerant_system
http://en.wikipedia.org/wiki/Fault_tree_analysis
http://www.pld.ttu.ee/IAF0030/Paper_4.pdf
http://www.isixsigma.com/tools-templates/risk-management/using-fault-tree-analysis-improve-software-testing/

