
LECTURE # 17

SOFTWARE TESTING - III (DYNAMIC)
WHITE BOX TESTING

chenbo@etao.net

6/21/20251

SOFTWARE QUALITY Assurance & Test

Topics to Cover

6/21/20252

 Unit Testing

 Code Coverage and its Types

 Control Flow Graph

 Cyclomatic Complexity

 Graph matrices

 Basis Path Testing

 Control Flow Testing

 Condition Testing

 Loop Testing

 Data Flow Testing

 Data Flow Coverage Criteria

 Terms used in data flow testing

 Data Flow Coverage Concept

 DC Path

Unit Testing

6/21/20253

 First level of testing. Refers to testing program
units in isolation.

 A program unit implements a function, it is
natural to test the unit before it is integrated
with other units.

 Unit testing focuses on verification effort on the
smallest unit of software design (the software
component or module).

 Using the component level design description as
a guide, important control paths are tested to
uncover errors within the boundary of the
module.

 The unit test is white box oriented and the step
can be conducted in parallel for multiple
components.

Dynamic Unit Testing

6/21/20254

 Dynamic unit testing is execution based testing

 As your programs become more complicated, and the number of functions increases,

you will need to test each function separately, therefore in this testing, a program unit

is actually executed in isolation.

 Losing strategy: Write each function and execute them all together.

 It is difficult to debug all the functions at once

 Multiple errors interact

 Winning strategy: Test each function separately.

 Make sure each function works before you test it with other functions.

 In the long run, this saves testing and debugging time.

 How can you test a function that depends on other functions?

Dynamic Unit Testing Environment

6/21/20255

 An environment for dynamic unit testing is created by emulating the context of the unit under test

 The caller unit is known as a test driver, and all the emulations of the units called by the unit under test are called

stubs

Test Driver and Stubs

6/21/20256

 Test Driver is a software module used to invoke a module under test and, often, provide test inputs, control and monitor

execution, and report test results (IEEE, 1990)

 A piece of code that passes test cases to another piece of code.

 The unit under test executes with input values received from the driver and, upon termination, returns a

value to the driver.

 The driver compares the actual outcome, that is, the actual value returned by the unit under test with the

expected outcome from the unit and reports the ensuing test result.

 For example, if you wanted to move a Player instance,Player1, two spaces on the board, the driver code

would be

movePlayer(Player1, 2);

 This driver code would likely be called from the main method.

Test Driver and Stubs

6/21/20257

 Stub is a “dummy subprogram” that replaces a unit that is called by the unit under test.

 A piece of code that simulates the activity of missing components.

 If the function A you are testing calls another function B, then use a simplified version of

function B, called a stub.

 A stub returns a value that is sufficient for testing.

 The stub does not need to perform the real calculation.

 A stub performs two tasks.

 First, it shows an evidence that the stub was, in fact, called. Such evidence can be shown by

merely printing a message.

 Second, the stub returns a pre-computed value to the caller so that the unit under test can

continue its execution.

Null Case Testing

6/21/20258

void function_under_test(int& x, int& y) {

...

p = price(x);

...

}

double price(int x) {return 10.00;}

 The value returned by function price is good enough for testing.

 The real price() function may not yet have been tested, or even written.

 Stubs and drivers are often viewed as throwaway code (Kaner, Falk

et al., 1999). However, they do not have to be thrown away: Stubs

can be “filled in” to form the actual method. Drivers can become

automated test cases.

Stub

Control Flow Testing

6/21/20259

 This testing approach identifies

the execution paths through a module

of program code and then creates

and executes test cases to cover those paths.

 Pick enough paths to assure that every

source statement is executed at least once.

 Path: A sequence of statement execution

that begins at an entry and ends at an exit.

Control Flow Testing

6/21/202510

 A simple notation for the representation of control flow is called a flow graph

(or program graph).

 In flow graph each circle (a flow graph node) represents one or more procedural

statements.

 A sequence of process boxes and a decision diamond can map into a single node.

 The arrows on the flow graph called edges or links represents flow of control.

 An edge must terminate at a node even if the node does not represent any

procedural statements.

 Areas bounded by edges and nodes are called regions.

 A compound condition occurs when one or more Boolean operators is present

in a conditional statement

 Each node that contains a condition is called a predicate node & is characterized

by two or more edges originating from it.

Elements of Control Flow Graph

6/21/202511

 Process Block

 Decision Point

 Junction Point

Decision

Point

Junction Point

Process Block

6/21/202512

 A process block is a sequence of program statements that execute sequentially from

beginning to end.

 Once the block is initiated, every statement within it will be executed sequentially.

 Process blocks are represented in control flow graphs by a bubble with one or more

entries and one exit.

Decision Point

6/21/202513

 A decision point is a point in the module at which the control flow can change.

 Most decision points are binary and are implemented by if-then-else statements.

 Multi-way decision points are implemented by case statements.

 They are represented by a bubble with one entry and multiple exits.

Junction Point

6/21/202514

 A junction point is a point at which control flows join together.

Path

6/21/202515

 A path through a program is a sequence of statements that starts at an entry, junction, or decision and ends

at another (possible the same), junction, decision, or exit.

 A path may go through several junctions, processes, or decisions, one or more times.

 Paths consist of segments.

 The length of a path is the number of links in a path.

Flow Graphs of various blocks

6/21/202516

Flow Graphs of various blocks

6/21/202517

Flow Graph

6/21/202518

Cyclomatic Complexity

6/21/202519

 Cyclomatic complexity is a software metric that provides a quantitative measure of
the global complexity of a program.

 When this metric is used in the context of the basis path testing, the value
computed for cyclomatic complexity defines the number of independent paths in
the basis set of a program.

 Three ways to compute cyclomatic complexity:

 The number of regions of the flow graph correspond to the cyclomatic complexity.

 Cyclomatic complexity, V(G), for a flow graph G is defined as V(G) = E - N + 2, where
E is the number of flow graph edges and N is the number of flow graph nodes.

 Cyclomatic complexity, V(G) = P + 1

where P is the number of predicate nodes contained in the flow graph G.

Example

6/21/202520

 Region, R= 6

 Number of Nodes = 13

 Number of edges = 17

 Number of Predicate Nodes = 5

 Cyclomatic Complexity, V(C) :

 V(C) = R = 6; Or

 V(C) = Predicate Nodes + 1 =5+1 =6 Or

 V(C)= E-N+2 = 17-13+2

Example (Home Assignment)

6/21/202521

i=1;

total.input = total.valid = 0;

Sum=0;

Do

increment total.input by 1;

IF value[i] >= minimum and value[i] <=maximum

THEN increment total.valid by 1;

sum = sum + value[I];

ENDIF

increment i by 1;

while value[i]<>-999 and total.input <= 100

end

IF value[i] >0

THEN average = sum / total.valid;

ELSE average = -999;

ENDIF

END average

C(G), Quality and Testability

6/21/202522

 C(G) < 5

‘simple and easy to understand’

 C(G) ≤ 10

‘not too difficult’

 C(G) > 20

‘complexity perceived as high’

 C(G) > 50

‘for all practical purposes untestable’

 However, no discovered relationship between C(G) and “bugginess”

Basic path testing

6/21/202523

 First proposed by Tom McCabe.

 Used as a guide for defining a basis set of execution path.

 Guarantee to execute every statement in the program at least one time.

 Basis path testing (McCabe, 1976) is a means for ensuring that all independent paths

through a code module have been tested.

 An independent path is any path through the code that introduces at least one new set of

processing statements or a new condition. (Pressman, 2001)

 Basis path testing provides a minimum, lower-bound on the number of test cases

that need to be written.

Basic path testing- Steps

6/21/202524

 Step 1 : Using the design or code as a foundation, draw a corresponding flow graph.

 Step 2: Determine the cyclomatic complexity of the resultant flow graph.

 Step 3: Determine a basis set of linearly independent paths.

 For example,

path 1: 1-2-4-5-6-7

path 2: 1-2-4-7

path 3: 1-2-3-2-4-5-6-7

path 4: 1-2-4-5-6-5-6-7

 Step 4: Prepare test cases that will force execution of each path in the basis set.

 Step 5: Run the test cases and check their results

Graph Matrices

6/21/202525

 Graph Matrix is a data structure that assists in basis path testing.

 A graph matrix is a square matrix whose size is equal to the number of nodes on the flow graph. Each row

and column corresponds to an identified node, and matrix entries corresponds to connections between

nodes.

 Referring to the figure each node on the flow graph is identified by numbers, while each edge is identified

by the letters. A letter entry is made in the matrix to correspond to a connection between two nodes. For

example node 3 is connected to node 4 by edge b.

Graph Matrices

6/21/202526

• Top and Bottom Layer Tests

can be done in parallel

• Does not test the individual

subsystems and their

interfaces thoroughly before

integration

 Graph Matrix is nothing more than a tabular representation of a flow graph.

However by adding a link weight to each matrix entry, the graph matrix can

become a powerful tool for evaluating program control structure during testing.

 The link weight 1(a connection exists) and 0(a connection does not exists).

Graph Matrices

6/21/202527

White-Box Software Testing Methods

6/21/202528

 Code Coverage is defined by the following types.

1.Statement Coverage

2.Segment Coverage

3.Method Coverage

4.Branch Coverage

5.Compound Condition Coverage

6.Basis Path Testing

7.Domain Testing

8.Data Flow Testing

9.Loop Testing

Code Coverage

6/21/202529

 Code coverage is a measure used in software testing to describe the degree to which the

source code of a program has been tested.

 An example of what code coverage statistics can mean is that if there is a method with 100

lines of code, and only 75 of these lines are actually executed when tests are being run,

then the method is considered to have a code coverage of 75 percent.

Method Coverage

6/21/202530

 Method coverage is a measure of the percentage of methods that have been

executed by test cases. Undoubtedly, your tests should call 100% of your methods.

 Method coverage of 50%, for example, means that half of the methods have been

called

Method Coverage

6/21/202531

 In the code shown in previous slide, we attain 100% method coverage by calling

the foo method.

 Consider Test Case 1: the method call foo(0, 0, 0, 0, 0.), expected return

value of 0.

 If you look at the code, you see that if ‘a’ has a value of 0, it does not matter what

the values of the other parameters are – so we will make it really easy and make

them all 0. Through this one call we attain 100% method coverage.

Statement Coverage

6/21/202532

 Statement coverage is a measure of the percentage of statements that have been

executed by test cases. Your objective should be to achieve 100% statement

coverage through your testing.

 In Test Case 1, we executed the program statements on lines 1-5 out of 12 lines of

code. As a result, we had 42% (5/12) statement coverage from Test Case 1. We can

attain 100% statement coverage by one additional test case,

 Test Case 2: the method call foo(1, 1, 1, 1, 1.), expected return value of 1. With

this method call, we have achieved 100% statement coverage because we have now

executed the program statements on lines 6-12.

Branch Coverage

6/21/202533

 Branch coverage is a measure of the percentage of the decision points (Boolean expressions) of
the program have been evaluated as both true and false in test cases.

 The small program in Figure 3 has two decision points – one on line 3 and the other
on line 7.

 Line 3 if (a == 0) {

 Line 7 if ((a==b) OR ((c == d) AND bug(a))) {

 For decision/branch coverage, we evaluate an entire Boolean expression as one
true-or-false predicate even if it contains multiple logical-and or logical-or
operators – as in line 7.

 We need to ensure that each of these predicates (compound or single) is tested as
both true and false. Table 1 shows our progress so far:

Branch Coverage

6/21/202534

Table 1: Decision Coverage

 Therefore, we currently have executed three of the four necessary conditions; we have
achieved 75% branch coverage thus far.

 We add Test Case 3 to bring us to 100% branch coverage: foo(1, 2, 1, 2, 1). When we look at
the code to calculate an expected return value, we realize that this test case uncovers a
previously undetected division-by-zero problem on line 10!

 In many cases, the objective is to achieve 100% branch coverage in your testing, though in
large systems only 75%-85% is practical. Only 50% branch coverage is practical in very
large systems of 10 million source lines of code or more (Beizer, 1990).

Line # Predicate True False

3 (a==0) Test Case 1

foo(0, 0, 0, 0, 0)

return 0

Test Case 2

foo(1, 1, 1, 1, 1)

return 1

7 ((a==b)OR((c==d)AND bug(a))) Test Case 2

foo(1, 1, 1, 1, 1)

return 1

Condition Coverage

6/21/202535

 Condition coverage is a measure of percentage of Boolean sub-expressions of the program that have been evaluated as both

true or false outcome [applies to compound predicate] in test cases. Notice that in line 7 there are three sub-Boolean

expressions to the larger statement (a==b), (c==d), and bug(a).

 Condition coverage measures the outcome of each of these sub-expressions independently tested as both

true and false.We consider our progress thus far inTable 2.

Table 2: Condition Coverage

Predicate True False

(a==b) Test Case 2

foo(1, 1, x, x, 1)

return 0

Test Case 3

foo(1, 2, 1, 2, 1)

Division by zero

(c==d) Test Case 3

foo(1, 2, 1, 2, 1)

Division by zero

Condition Coverage

6/21/202536

 At this point, our condition coverage is only 50%. The true condition (c==d) has never
been tested. Additionally, short-circuit Boolean has prevented the method bug(int) from
ever being executed. We examine our available information on the bug method and
determine that is should return a value of true when passed a value of a=1.

 Write Test Case 4 to address test (c==d) as true: foo(1, 2, 1, 1, 1), expected return
value 1.

 However, when we actually run the test case, the function bug(a) actually returns false,
which causes our actual return value (division by zero) to not match our expected return
value. This allows us to detect an error in the bug method. Without the addition of
condition coverage, this error would not have been revealed.

 To finalize our condition coverage, we must force bug(a) to be false. We again examine our
bug() information, which informs us that the bug method should return a false value if fed
any integer greater than 1. So we create Test Case 5, foo(3, 2, 1, 1, 1), expected return
value “division by error”.The condition coverage thus far is shown inTable 3

Condition Coverage

6/21/202537

Table 3: Condition Coverage

Predicate True False

(a==b) Test Case 2

foo(1, 1, 1, 1, 1)

return 0

Test Case 3

foo(1, 2, 1, 2, 1)

Division by zero

(c==d) Test Case 4

foo(1, 2, 1, 1, 1)

return 1

Test Case 3

foo(1, 2, 1, 2, 1)

Division by zero

Bug(a) Test Case 4

foo(1, 2, 1, 1, 1)

return 1

Test Case 5

foo(3, 2, 1, 1, 1)

Division by zero

Domain Testing

6/21/202538

 Domain testing is an important white box testing method. The goal is to check

values taken by a variable, a condition, or an index, and to prove whether they are

outside the valid range or not. It also contains checking that the program accepts

only valid input , because it is unlikely to get reasonable results if idiocy has been

entered. This part can be called “garbage in -- garbage out’’ testing.

 Domain testing can include the following checks

 Are all indices used to access an array inside the array's dimensions?

 Are all those indices integers?

Loop Testing

6/21/202539

 Loop testing is a white box testing technique that focuses on the validity of loop

constructs.

Simple loops

Concatenated loops

Nested loops

Simple Loops Testing

6/21/202540

 The following set of tests can be applied to simple loops, where n is the maximum

number of allowable passes through the loop.

 Skip the loop entirely

 Only one pass through the loop

 Two passes through the loop

 m passes through the loop where m<n

 n-1,n,n+1 passes through the loop.

Nested Loop Testing

6/21/202541

 If we were to extend the test approach for simple loops to nested loops the number

of possible tests would grow as the level of nesting increases. Beizer suggest an

approach that will help to reduce the number of tests:

 Start at the innermost loop. Set all other loops to min. values

 Conduct simple loop tests for the innermost loop while holding the outer loops at

their min. iteration parameter values.

 Work outward conducting tests for the next loop, but keeping all other outer loops

at min. values and other nested loops to typical values.

 Continue until all loops have been tested.

Data Flow Testing

6/21/202542

 Data flow testing is a structural test technique which aims to execute subpaths from points
where each variable in a component is defined to points where it is referenced.

 These subpaths are known as definition-use pairs (du-pairs). The different data flow
coverage criteria require different du-pairs and subpaths to be executed.

 Data flow testing is a powerful tool to detect improper use of data values due to coding
errors.

 Almost every programmer has made this type of mistake:

main()

{

int x;

if (x==42)

{ ...}

}

 The mistake is referencing the value of a variable without first assigning a value to it.

Existence Possibilities of a Variable

6/21/202543

 Variables that contain data values have a defined life cycle. They are created, they
are used, and they are killed (destroyed).

 Three possibilities exist for the first occurrence of a variable through a program
path:

 1.~d: the variable does not exist (indicated by the ~), then it is defined (d)

 2.~u: the variable does not exist, then it is used (u)

 3.~k: the variable does not exist, then it is killed or destroyed (k)

 The first is correct. The variable does not exist and then it is defined.

 The second is incorrect. A variable must not be used before it is defined.

 The third is incorrect. Destroying a variable before it is created is indicative of a
programming error.

Sequence of Possibilities

6/21/202544

 Now consider the following time-sequenced pairs of defined (d), used (u), and killed (k):

 dd: Defined and defined again-not invalid but suspicious. Probably a programming error.

 du: Defined and used-perfectly correct. The normal case.

 dk: Defined and then killed-not invalid but probably a programming error.

 ud: Used and defined-acceptable.

 uu: Used and used again-acceptable.

 uk: Used and killed-acceptable.

 kd: Killed and defined-acceptable. A variable is killed and then redefined.

 ku: Killed and used-a serious defect. Using a variable that does not exist or is undefined is

always an error.

 kk: Killed and killed-probably a programming error.

Terms used in data flow testing

6/21/202545

 DU pair: a pair of definition and use for some variable, such that at least one DU

path exists from the definition to the use

x = ... is a definition of x

 = ... x ... is a use of x

 DU path: a DU path for a variable is a path from the defining node to the usage

node, thus the "flow of data".

 All-du-path (All-Definition Use-Path) coverage testing involves :

Identifying all du pairs in the program.

Create a path for each du pair.

Produce test data for testing the path.

Data Flow Coverage Concept

6/21/202546

 Value of x at 6 could be computed at 1 or at 4

 Bad computation at 1 or 4 could be revealed only if they are used at 6

 (1,6) and (4,6) are def-use (DU) pairs

defs at 1,4

use at 6

Definition Clear Path

6/21/202547

 1,2,3,5,6 is a definition-clear path from 1 to 6

x is not re-assigned between 1 and 6

 1,2,4,5,6 is not a definition-clear path from 1 to 6

the value of x is “killed” (reassigned) at node 4

References

6/21/202548

[1] Software Engineering by Roger Pressman

[2] http://www.freetutes.com/systemanalysis/sa9-white-box-testing.html

[3] http://docs.ncover.com/best-practices/code-quality-metrics/

[4] http://en.wikipedia.org/wiki/Unit_testing

[5] https://users.cs.jmu.edu/bernstdh/web/common/help/stubs-and-drivers.php

[6] http://www.cs.gmu.edu/~mcjunkin/cs112lectures/Stubs.htm

[7] http://agile.csc.ncsu.edu/SEMaterials/WhiteBox.pdf

[8] http://soft-testing.blogspot.com/2007/12/loop-testing.html

http://www.freetutes.com/systemanalysis/sa9-white-box-testing.html
http://docs.ncover.com/best-practices/code-quality-metrics/
http://en.wikipedia.org/wiki/Unit_testing
https://users.cs.jmu.edu/bernstdh/web/common/help/stubs-and-drivers.php
http://www.cs.gmu.edu/~mcjunkin/cs112lectures/Stubs.htm
http://agile.csc.ncsu.edu/SEMaterials/WhiteBox.pdf
http://soft-testing.blogspot.com/2007/12/loop-testing.html

