Software Quality Assurance and Test
Class Participation Sheet
For Lecture 3, Black Box Testing
Name: ____________________________________ Student ID: _____________________
Question 1 [practice]. Assume the specification for sum:

requires array != null && len >= 0 && array.length == len

ensures \result == (\sum int j; 0 <= j && j < len; array[j])

Assume the following input and outputs for sum, where a 3 element array is written as [1, 2, 3]. For which of the inputs and outputs is the implementation of sum correct according to the specification given?

A)
Input:
array = [1, 2, 3, 4], len = 4

Output:
10

B)
Input:
array = [0, 0, 3, -7], len = 4

Output:
none (the program does not terminate)

C)
Input:
array = [1, 2, 3, 4], len = 3

Output:
7

D)
Input:
array = [1, 2, -3, 4], len = 4

Output:
7

[image: image1.wmf]2

4

2

bbac

x

a

-±-

=

Question 2 [practice]. Consider the following specification: given numbers a, b, and c, the program shall return the roots of the quadratic polynomial ax2 + bx + c. Recall that the roots of a quadratic equation are given by:
a) What are the equivalence classes of valid input?

b) Write some robustness tests (invalid inputs)
Question 3 [practice]. Consider the following specification of Tic-Tac-Toe: Two players, X and O, take turns marking the spaces in a 3×3 grid, with X going first. The player who succeeds in placing three respective marks in a horizontal, vertical or diagonal row wins the game.
a) Equivalence classes of valid input?

b) Boundary inputs?

c) Robustness tests (invalid inputs)?
Question 4 [practice]. Consider the following implementation of binary search:

[image: image2.wmf]2

4

2

bbac

x

a

-±-

=

a) Equivalence classes of valid input?

b) Boundary inputs?

c) Robustness tests (invalid inputs)?
d) What tests would you use to achieve line coverage?
Optional: Ask a question, make a suggestion, or provide feedback to the instructor/TAs
� EMBED Equation.DSMT4 ���

public static int binsrch (int[] a, int key) {

 int low = 0;

 int high = a.length - 1;

 while (true) {

 if (low > high) return -(low+1);

 int mid = (low+high) / 2;

 if (a[mid] < key) low = mid + 1;

 else if (a[mid] > key) high = mid - 1;

 else return mid;

 }

}

_1262673551.unknown

