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Abstract

This thesis presents a port of a lightweight instructional operating system called Em-

bedded Xinu to the Raspberry Pi. The Raspberry Pi, an inexpensive credit-card-sized

computer, has attracted a large community of hobbyists, researchers, and educators since

its release in 2012. However, the system-level software running on the Raspberry Pi

has been restricted to two ends of a spectrum: complex modern operating systems such

as Linux at one end, and very simple hobbyist operating systems or simple “bare-metal”

programs at the other end. This project bridges this gap by porting the Embedded Xinu

operating system to the Raspberry Pi. Although simple and designed for educational

use, Embedded Xinu supports major features of modern operating systems such as

preemptive multitasking and networking. This thesis also presents the addition of new

optional features, such as USB support, to Embedded Xinu, and demonstrates major

challenges that may arise when writing device drivers for modern hardware.
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Chapter 1

Introduction

Operating systems are a fundamental part of modern computing. In the broadest

sense, an operating system is an abstract machine on which application programs

run, providing benefits such as code reuse, isolation from the underlying hardware,

multitasking, and efficient resource sharing. The understanding of operating systems

is a critical part of a computer science education [17]. But beneath the abstractions

they provide, modern operating systems are highly complex software systems that

frequently contain millions of lines of code, as is necessary to keep up with new

hardware and features while still maintaining backwards compatibility with legacy

hardware and applications. Although open source operating systems such as Linux are

readily available for educational use, they are generally considered too complex and

production-focused to be used as the basis for a broad overview of operating system

functionality in an educational setting [9].

Instructional, or educational, operating systems provide a way for students to learn

about operating systems and related topics in a hands-on manner without immediately

plunging deep into highly complex operating systems such as Linux. In addition, an

operating systems course incorporating an instructional operating system provides an

interesting and practical alternative to a purely theoretical, book-based course without

any hands-on activities.

Embedded Xinu is a contemporary instructional operating system based on the

original Xinu operating system designed by Dr. Douglas Comer in 1984 [17] [22].

Developed primarily by students under the guidance of Dr. Dennis Brylow at Marquette

University, Embedded Xinu is a flexible operating system that runs on both real and

virtual hardware and has been adapted for use in variety of computer science courses,

including operating systems [18], hardware systems [17], networking [19], and compiler

construction [38]. Embedded Xinu is distinguished from the original Xinu by its target

of modern embedded platforms, such as commercially available MIPS-based routers,

as well as modernization of the codebase. As part of the NexOS Project, Marquette

University, the University of Buffalo, and the University of Mississippi have established

experimental laboratories for hands-on projects in embedded systems courses [45].

These laboratories rely on Embedded Xinu running on Linksys WRT54GL routers.
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Although MIPS-based routers such as the Linksys WRT54GL are fitting hardware

platforms for Embedded Xinu due to their low cost, embedded characteristics, and

distinctive features such as multiple networking interfaces, they suffer from several

limitations. Such routers are typically designed in such a way that low-level hardware

access is not readily available to the end user. For example, before Embedded Xinu

can run on the WRT54GL router, the user must perform a hardware modification to

enable access to the integrated serial ports [17]. Indeed, buying, modifying, and setting

up one or two dozen routers requires significant time, effort, and knowledge that not all

instructors who might benefit from Embedded Xinu have.

My work brings Embedded Xinu to a new hardware platform, the Raspberry Pi, in a

project called “XinuPi”. The Raspberry Pi is a credit-card-sized computer designed by

the Raspberry Pi Foundation, a nonprofit organization, to support hands-on computer

science education with minimal hardware cost. While being priced at only $25 or $35

depending on the model, the Raspberry Pi offers modern hardware such as a fairly

powerful CPU and GPU, memory card support, and USB support. It also offers GPIO

(General Purpose Input/Output) pins for easy hardware interfacing and serial console

access [40].

The combination of a low price, organizational backing, a rich set of hardware pe-

ripherals, and Linux support have attracted a large community of hobbyists, researchers,

and educators to the Raspberry Pi since its release in 2012. Yet despite much interest in

lower-level programming on the Raspberry Pi [4], much of the hardware has remained

fairly inaccessible to programmers working outside a Linux environment. Consequently,

“bare metal” projects on the Raspberry Pi have typically remained quite simple, and the

platform has not yet been made available for operating systems education in the style

of Xinu. My work helps alleviate this problem by providing and documenting a port of

Embedded Xinu to the Raspberry Pi, which demonstrates a simple operating system

several orders of magnitude smaller (in terms of code) than Linux running on the very

same hardware.

XinuPi is also a practical demonstration of issues that arise when writing or porting

an operating system to a new hardware platform, in particular one based on a modern

system-on-a-chip designed for embedded systems.

My work on XinuPi began in June 2013 as part of the Computation Across the
Disciplines REU (Research Experience for Undergraduates) program at Marquette

University, in collaboration with Dr. Dennis Brylow and two of his students — Farzeen

Harunani and Tyler Much. Throughout the summer of 2013 and with varying degrees

of collaboration with the other contributors, I implemented or ported various operating

system features including thread creation, context switching, interrupt handling, a USB

subsystem, a TFTP client, a DHCP client, and a driver for SMSC LAN9512 USB

Ethernet devices.

Towards the end of the summer, Farzeen, Tyler, Dr. Brylow, and I wrote an 8-

page paper entitled XinuPi: Porting a Lightweight Educational Operating System to
the Raspberry Pi. In October 2013, we presented our paper at the 2013 Workshop
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on Embedded and Cyberphysical Systems Education (WESE), organized as part of

Embedded Systems Week (ESWEEK) in Montreal, Canada [14]. Our paper briefly

described our preliminary work with XinuPi, but in this thesis I go into much more

detail and also cover later work.

During the fall of 2013, I made other improvements to Embedded Xinu, including

documentation improvements, bug-fixes, and the implementation of a driver for USB

keyboards. During this time I discussed the operating system with other developers on

the private Embedded Xinu mailing list. However, no other developers made source

code contributions during this time.

In March 2014, I completed a basic port of Embedded Xinu to the arm-qemu virtual

platform. Although I do not describe the arm-qemu port in detail in this thesis, it

borrowed heavily from the Raspberry Pi port (“XinuPi”), since both target ARM-based

platforms. This shows that the Raspberry Pi port of Embedded Xinu has, in addition to

accomplishing other goals, made it easier to support other platforms using the ARM

processor architecture, which is commonly used in modern embedded systems.

At this stage in the project, XinuPi can now be used in various computer science

courses. Some of the established Embedded Xinu curriculum materials can be reused,

whereas others will need to be modified to take into account the Raspberry Pi hardware.

Originally, Tyler had planned to work with Dr. Brylow to set up a laboratory of Rasp-

berry Pis in the Systems Laboratory at Marquette University for use in their operating

systems course in the spring of 2014. However, this seems not to have happened as of

March 2014. Still, at least one other school has already made use of XinuPi. Section

9.3 contains more details on potential and actual educational use of XinuPi.

This thesis will begin with a more in-depth discussion of Embedded Xinu, without

special focus on the Raspberry Pi. This will be followed by an in-depth discussion of

the relevant Raspberry Pi hardware, then various chapters where I present my work to

port or implement specific Embedded Xinu operating system components and features,

primarily for the Raspberry Pi platform. This thesis will conclude with a discussion of

other work — both on Embedded Xinu and external related work — and future steps.
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Chapter 2

Embedded Xinu

This chapter presents background information on the Embedded Xinu operating system,

most of which predates my work. However, I will mention my work when essential to

understanding the current status of the Embedded Xinu project overall (and not just the

Raspberry Pi support).

2.1 Design and history

2.1.1 Overview

The original Xinu (or XINU) operating system is an instructional operating system

created by Dr. Douglas Comer at Purdue University in 1984 [17] [22]. The original

code was written for the LSI-11 computer. “Xinu” is both “UNIX” spelled backwards

and a recursive acronym standing for “Xinu is not UNIX”. Although Xinu shares some

characteristics with UNIX, it has its own unique design that emphasizes simplicity.

Over the years, Xinu has been ported to new platforms, used at various colleges and

universities, and even used in commercial products [23].

Embedded Xinu is a re-implementation of Xinu started by Dr. Dennis Brylow at

Marquette University in 2006 [5]. The original goal of the Embedded Xinu project

was to port Xinu to the MIPS architecture by specifically targeting Linksys WRT54GL

routers. A secondary goal was to modernize the codebase through the use of ANSI C

syntax rather than K&R C syntax, the use of de-facto standard modern tools such as

the GCC compiler to build the operating system, and the use of modern documentation

tools such as Doxygen. Following the original work with the WRT54GL, Embedded

Xinu has also been ported to several other MIPS-based routers, QEMU [13] (using

MIPSel or ARM emulation), a JavaScript x86 PC emulator, and the Raspberry Pi (this

thesis).

Despite sharing some fundamental design elements, Embedded Xinu is in many

ways very different from commonly used operating systems such as Linux and Windows.

As an instructional operating system designed primarily for embedded hardware, it is
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not intended for everyday use; rather, it is intended that users extend or modify the

code for specific applications. Furthermore, as part of its simple design and embedded

focus, there is no distinction between user-space and kernel-space; that is, Embedded

Xinu applications are simply made part of the operating system itself, sometimes as

commands in the interactive shell. Essentially, a build of Embedded Xinu is a single

binary image, similar to the “kernel” of other operating systems. Users typically

interact with Embedded Xinu through a command-line interface over a serial port, but

a TELNET server is also available on platforms supporting networking. In addition,

partly as a result of my work, a keyboard-and-monitor setup is now supported on the

Raspberry Pi. There is currently no official support for filesystems.

Like most modern operating systems, Embedded Xinu is primarily written in the

C programming language. Some very low-level, platform-specific subroutines are, by

necessity, written in assembly language. Work has been done to port a Lua interpreter

to Embedded Xinu [48], but currently C is still the primary development language due

to its widespread use and its suitability to systems-level programming.

Embedded Xinu has been used in operating systems courses, where students receive

a stripped-down version of the code and work to implement, by themselves, important

operating system features [18]. Embedded Xinu has also been used in a hardware

systems course because it makes available low-level hardware access and provides

an engaging environment for assembly-language programming for a modern RISC

architecture [17].1 Mallen and Brylow [38] describe a compiler construction course

that ties the construction of a compiler for the “MiniJava” programming language to

an Embedded Xinu back-end supporting concurrent threads. Brylow and Thurow [19]

describe how the networking features and router support in Embedded Xinu have made

possible a course in computer networking that features hands-on activities such as

building a custom network stack.

As part of its instructional focus, Embedded Xinu focuses on easy-to-understand,

well-documented code and modularity. The goal of the project is not to simply add

more features, but rather to maintain only the most useful features at a given time

and maintain a clean, well-documented design that can be understood in a reasonable

amount of time. The core of the operating system — the code built into the kernel

regardless of the platform — is quite small, since most functionality is in modules2 that

can be disabled at compilation time. As such, the operating system can still be easily

stripped down to its core, despite the addition of certain new features, such as USB, as

described in this thesis.

1RISC (Reduced Instruction Set Computing) microprocessor architectures, such as MIPS and ARM,

are characterized by having simpler instruction sets than CISC (Complex Instruction Set Computing)

architectures, such as x86.
2The use of the word “modules” here is not meant to imply that Embedded Xinu supports dynamically

loadable kernel modules, like Linux does.
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2.1.2 Threads and multitasking

A running instance of Embedded Xinu consists of one or more threads, each of which

is an independent flow of control within the operating system. Unlike more complex

operating systems, no distinction is made between kernel and user threads. Furthermore,

there is no distinction between “processes” and “threads” — there are only threads, and

all share the same memory space.

Although only one CPU is supported3, Embedded Xinu still allows multiple threads

to execute concurrently through the use of preemptive multitasking, which is a com-

monly used technique that provides the illusion that multiple threads are executing at

the same time on the same processor. Preemptive multitasking works by configuring

a hardware timer to periodically interrupt the CPU. When such an interrupt occurs,

the operating system has the opportunity to reschedule the CPU to a different thread.

The operating system’s scheduler is responsible for choosing which thread gets to run

next. Although some operating systems such as Linux use highly complex scheduling

algorithms, Embedded Xinu’s scheduler uses a simple algorithm that simply dequeues

and runs the next available thread from a data structure called the “ready queue”, which

contains the list of threads currently ready to run, sorted by thread priority.

A new thread is programatically created by calling create(), which is declared

as follows:

tid_typ create(void *procaddr, uint ssize, int priority,
const char *name, int nargs, ...);

create() takes in the address of the procedure to execute in the new thread,

the stack size, the priority, the name of the thread, and any arguments to pass to the

thread’s start procedure. The return value is a unique thread identifier (with integer

type tid typ) for the newly created thread, or SYSERR if the new thread could not be

created. Thread identifiers are actually indices into thrtab, which is a table of thread

entries with a fixed size defined at compilation time.

A newly create()d thread begins in a suspended state and is not eligible to be

run until ready() has been called to insert it into the ready queue:

int ready(tid_typ tid, bool resch);

A thread, identified by its thread ID, can be terminated using kill(), declared as

follows:

syscall kill(tid_typ tid);

kill() frees the memory allocated for the thread’s stack and marks the thread

entry as free. A thread automatically kill()s itself if it reaches the end of the

procedure with which it was started.

3One student has ported Embedded Xinu to the highly parallel Intel SCC platform [64]. However,

Intel has since discontinued the platform, and consequently the code is no longer included in the current

version of Embedded Xinu.
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To switch between threads, Embedded Xinu must save the state of the currently

executing thread and restore the state of a different thread. A thread’s state primarily

contains its context record, which contains the saved values of CPU registers. The

format of the thread context record is architecture-dependent because each architecture

has a different set of CPU registers and calling convention. In any case, switching

threads is referred to as context switching and is implemented using the ctxsw()
procedure. ctxsw() is a very low-level procedure that must be implemented in

assembly language and is not intended to be called directly by applications. It is

somewhat unusual, as far as procedures go, in that it effectively returns in a thread

other than the one from which it was called; the “real” return to the original thread only

happens when that thread is switched back to by a later call to ctxsw().

By default, at any time during a thread’s execution, the CPU can be interrupted. Such

interrupts can arise from the timer being used to implement preemptive multitasking as

well as from other hardware devices that have been configured to generate interrupts,

typically by a device driver. Therefore, care must be taken when multiple threads could

be accessing the same data concurrently. Short blocks of code can be executed with

interrupts disabled by making use of the disable() and restore() functions.

However, to maintain a high level of performance and responsiveness, interrupts should

not be disabled for longer blocks of code. For this situation Embedded Xinu provides

semaphores with the standard semantics. A thread can create a semaphore with an

initial count by calling semcreate(), wait on a semaphore by calling wait(), and

signal a semaphore by calling signal().

Embedded Xinu also provides an optional mailbox module that provides structured

inter-thread communication via message passing through FIFO (First In, First Out)

queues called mailboxes.

Although the thread execution model described here is much simpler than the

models used in other operating systems such as Linux, it shares many essential features

and is a good starting point for understanding operating systems.

2.1.3 Device model
From the perspective of an operating system, a device is a hardware component with

which software can communicate. Examples include serial ports, network controllers,

non-volatile memory, keyboards, and monitors.

In UNIX-like systems, devices are, at one level, usually represented as files on

which common operations, such as reading and writing, can be performed. Both

Embedded Xinu and the original Xinu follow a similar but simplified device model.

At compilation time, a fixed table of devices is defined based on a platform-specific

configuration file. Each entry in the device table, or devtab, is of the format shown

in Figure 1. Each entry contains a number of function pointers, each of which points

to the implementation of the corresponding operation on the specific device. These

function pointers are not accessed directly, but rather accessed through generic system

calls such as read() and write(). In object-oriented terms, this is an example of
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typedef struct dentry
{

int num;
int minor;
char *name;
devcall (*init)(struct dentry *);
devcall (*open)(struct dentry *, ...);
devcall (*close)(struct dentry *);
devcall (*read)(struct dentry *, void *, uint);
devcall (*write)(struct dentry *, const void *,

uint);
devcall (*seek)(struct dentry *, long);
devcall (*getc)(struct dentry *);
devcall (*putc)(struct dentry *, char);
devcall (*control)(struct dentry *, int, long,

long);
void *csr;
void (*intr)(void);
uchar irq;

} device;

Figure 1: Declaration of device table entry in Embedded Xinu. Note: “dentry” here

stands for “device entry”, not “directory entry” as it does in Linux.

polymorphism. However, not all operations make sense for all devices; for example, it

makes no sense to write() to a keyboard. In such cases, the operation is redirected

to a dummy function that simply returns SYSERR (the generic error code in Embedded

Xinu).

The source code for Embedded Xinu’s device drivers is located in subdirectories of

the device/ directory. Each device driver typically provides the ability to manage

one or more devices of the same type (e.g. multiple network interfaces of the same

model). Each such device is given its own device entry in the device table, but each

device of a given type has a distinct minor number.

Embedded Xinu’s device model can also represent pseudo-devices that are created

by software and do not represent specific hardware devices. Examples of this are the

TTY driver, which wraps around another device driver to provide capabilities such as

line buffering suited for interactive use, and the UDP and TCP drivers, which manage

the allocation of UDP and TCP devices (similar to sockets in other operating systems).

Since the Xinu device model is fairly simple, it does have some limitations. It only

supports static devices, which places it at odds with buses such as USB that support

dynamic addition and removal of devices. The same applies to UDP and TCP devices,

which are usually allocated and freed at runtime and are not well-suited to being derived

from static entries in the main device table.
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2.1.4 Standard C library
To support applications and drivers, Embedded Xinu provides a set of system calls4

which allow access to resources such as threads, semaphores, devices, and memory.

On top of these raw system calls, it is very useful to have a set of standard utility

functions to make programming easier. As such, Embedded Xinu implements a portion

of a “standard C library” — that is, some of the functions that the C99 standard [63]

specifies must be available in a conforming C implementation. These are located in

lib/libxc/ and include formatted input/output functions such as scanf() and

printf(), string functions such as strcmp() and strchr(), memory manage-

ment functions such as malloc() and free(), and a few miscellaneous functions

such as qsort(). Since it is part of an instructional operating system, the C library

focuses on simplicity and correctness rather than performance and full compliance with

the C99 standard.

During my work to port Embedded Xinu to the Raspberry Pi, I discovered that

the C library contained many bugs. Furthermore, most functions were poorly docu-

mented, and some were excessively complicated or confusing. Consequently, I rewrote

and re-documented most of the library to ensure a high-quality, well-documented

implementation.

2.1.5 Shell
When a user starts Embedded Xinu and connects to it using a platform-appropriate

method such as a serial cable, the first thing they see is the Xinu Shell (xsh), which is

the interactive command-line interface to the operating system. Figure 2 shows example

usage of the shell.

New shell commands can be implemented fairly easily. However, for convenience, a

special shell command test is provided that by default does nothing. Experimental code

can be written in the corresponding file (shell/xsh test.c) and will be executed

when the test command is run.

2.1.6 Networking subsystem
Networking is a major component of Embedded Xinu that is available on most supported

platforms. The networking subsystem supports various protocols and is designed to be

easy to customize in educational settings [19].

Computer networking deals with the sending and receiving of packets, which

typically use a series of nested protocols. In Embedded Xinu, incoming network

packets are received by a network interface driver 5 and are passed up the networking

4Unlike in many operating systems, making a “system call” in Embedded Xinu does not actually

cause a transition between processor modes.
5Currently, only Ethernet is supported; there is no support for wireless on any platform, despite the

use of the Linksys WRT54GL, which is in fact a wireless router
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(Embedded Xinu) (arm-rpi) #0 (e@zzz) Tue Nov 19 20:42:48 CST 2013

134217728 bytes physical memory.
32768 bytes reserved system area.

3772032 bytes Xinu code.
8192 bytes stack space.

130404736 bytes heap space.

-----------------------------------------------------
____ ___.__ .___ .__
\ \/ /|__| ____ __ __ | _ \ |__|
\ / | |/ \| | \ | |_| || |
/ \ | | | \ | / | __/ | |
/___/\ \|__|___| /____/ | | |__|

\_/ \/ |/ v3.14
-----------------------------------------------------

Welcome to the wonderful world of Xinu!
xsh$ ps
TID NAME STATE PRIO PPID STACK BASE STACK PTR STACK LEN
--- ---------------- ----- ---- ---- ---------- ---------- ---------

0 prnull ready 0 0 0x003A0E80 0x003A2DCC 8192
1 USB scheduler wait 60 0 0x07FFFFFC 0x07FFFF64 4096
2 USB hub thread wait 60 0 0x07FFEFFC 0x07FFEF6C 8192
3 arpDaemon wait 30 0 0x07FFCFFC 0x07FFCF74 4096
4 rtDaemon wait 30 0 0x07FFBFFC 0x07FFBF74 4096
5 icmpDaemon wait 30 0 0x07FFAFFC 0x07FFAF74 4096
6 tcpTimer sleep 20 0 0x07FF9FFC 0x07FF9F74 65536
8 USB defer xfer sleep 100 1 0x07FD9FFC 0x07FD9F7C 4096
9 SHELL0 recv 20 7 0x07FD8FFC 0x07FD8D7C 65536
10 SHELL1 wait 20 7 0x07FC8FFC 0x07FC8D24 65536
19 ps curr 20 9 0x07FE9FFC 0x07FE9E24 8192

xsh$

Figure 2: Example use of the Xinu Shell: the operating system printed an artistic logo

and version number specific to the Raspberry Pi port after starting. Following that, the

user ran the ps command, which displayed a table of threads in the system. The shell is

now waiting for the next command to be entered. Threads are described in more detail

in Section 2.1.2. A list of all shell commands supported by the build of Embedded Xinu

can be obtained by running help with no arguments.
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stack, often to the IPv4 module, then to the TCP or UDP driver, then to an application.

Other paths are possible; for example, ARP and ICMP replies are generated directly

by the networking subsystem, and the routing module can route IPv4 packets destined

for elsewhere. When an application sends packets, they traverse the networking stack

in the opposite direction and ultimately are sent out onto the network by the network

interface driver.

The networking subsystem supports up to a fixed number of network interfaces

(chosen at compilation time), each of which is associated with a fixed number of

receiver threads that read networking packets from the interface. Each network interface

corresponds to a distinct Ethernet port available on the underlying hardware. However,

some platforms, such as the Raspberry Pi, only have one network interface available,

and some do not support networking at all.

Various shell commands, such as netup, netdown, route, ping, arp, and netstat,
let users interact with the networking subsystem. Example usage of netup, route, and

ping is shown in Figure 3.

2.2 Testsuite
In contrast with the original Xinu operating system, Embedded Xinu follows modern

software development practice by integrating testing into the development process.

Embedded Xinu includes an optional runtime test suite that automatically tests many

operating system features. It can be run by executing the testsuite command at the

interactive shell. As shown by its output in Figure 4, the test suite tests a range of

features. Regressions can be easily detected. Still, Embedded Xinu’s test suite, like

any other in any software project, is incomplete and cannot fully test all features.

Furthermore, I discovered and fixed bugs in the test suite itself, which was frustrating.

2.3 Documentation
Since Embedded Xinu is an instructional operating system, it is critical that it be

well-documented. Although the code in the original Xinu operating system was fairly

straightforward, the main formal documentation seems to have been in the form of a

book by Dr. Douglas Comer [22] that walked the reader through the operating system.

This is certainly a good approach, but Embedded Xinu is a somewhat larger project and

needs formal documentation of its own, ideally documentation that is easily accessible

without requiring users to find or purchase a traditional book. Currently, Embedded

Xinu’s documentation can be divided into high-level documentation of the operating

system as a whole and the API documentation.

Prior to my work, the high-level documentation consisted of articles on the Embed-

ded Xinu Wiki [5], primarily written by former students at Marquette University. The

articles covered operating system features, hardware information, and course curricula
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xsh$ netup ETH0 192.168.0.2 255.255.255.0
WARNING: defaulting to no gateway
ETH0 is 192.168.0.2 with netmask 255.255.255.0 (no gateway)
xsh$ route
Destination Gateway Mask Interface
192.168.0.0 * 255.255.255.0 ETH0
xsh$ ping 192.168.0.1
PING 192.168.0.1
52 bytes from 192.168.0.1: icmp_seq=0 ttl=64 time=1.112 ms
52 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=0.392 ms
52 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=0.379 ms
52 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=0.368 ms
52 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=0.299 ms
52 bytes from 192.168.0.1: icmp_seq=5 ttl=64 time=0.325 ms
52 bytes from 192.168.0.1: icmp_seq=6 ttl=64 time=0.373 ms
52 bytes from 192.168.0.1: icmp_seq=7 ttl=64 time=0.338 ms
52 bytes from 192.168.0.1: icmp_seq=8 ttl=64 time=0.403 ms
52 bytes from 192.168.0.1: icmp_seq=9 ttl=64 time=0.293 ms
--- 192.168.0.1 ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 9001ms
rtt min/avg/max = 0.293/0.428/1.112 ms

Figure 3: Example use of network shell commands. The user ran netup to bring

up the network interface ETH0 (the first Ethernet interface) with a static IP address

of 192.168.0.2 and a netmask of 255.255.255.0. As shown by the output from the

following route command, the netmask tells the routing module that packets destined

for any IP address between 192.168.0.0 and 192.168.0.255 (inclusively) should be sent

over ETH0. Finally, the user ran the ping command to test the connection with another

computer on the network.
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xsh$ testsuite
Test Suite 1: Argument Passing [PASS]
Test Suite 2: Priority Scheduling [PASS]
Test Suite 3: Thread Preemption [PASS]
Test Suite 4: Recursion [PASS]
Test Suite 5: Single Semaphore [PASS]
Test Suite 6: Multiple Semaphores [PASS]
Test Suite 7: Counting Semaphores [PASS]
Test Suite 8: Killing Semaphores [PASS]
Test Suite 9: Process Queues [PASS]
Test Suite 10: Delta Queues [PASS]
Test Suite 11: Standard Input/Output [PASS]
Test Suite 12: TTY Driver [PASS]
Test Suite 13: Character Types [PASS]
Test Suite 14: String Library [PASS]
Test Suite 15: Standard Library [PASS]
Test Suite 16: Type Limits [PASS]
Test Suite 17: Memory [PASS]
Test Suite 18: Buffer Pool [PASS]
Test Suite 19: NVRAM [SKIP]
Test Suite 20: System [PASS]
Test Suite 21: Message Passing [PASS]
Test Suite 22: Mailbox [PASS]
Test Suite 23: Ethernet Driver [PASS]
Test Suite 24: Ethernet Loopback Driver [PASS]
Test Suite 25: Network Addresses [PASS]
Test Suite 26: Network Interface [PASS]
Test Suite 27: ARP [PASS]
Test Suite 28: Snoop [PASS]
Test Suite 29: UDP Sockets [PASS]
Test Suite 30: Raw Sockets [PASS]
Test Suite 31: IP [PASS]
Test Suite 32: User Memory [PASS]
Test Suite 33: Simple TLB [SKIP]

Figure 4: Output from a sample run of the Embedded Xinu test suite on the Raspberry

Pi. Tests 19 and 33 were automatically skipped because the corresponding features are

not supported in the Raspberry Pi port.
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and assignments. Many pages were out of date or unclear to outsiders, and much impor-

tant information was missing. After a discussion with another developer on the Xinu

mailing list, we decided to export the Wiki into reStructuredText (rst) documentation

and distribute it directly with the source code, with HTML and PDF versions available

online. Following this, I have been working to update the documentation, including

adding information about the Raspberry Pi port as well as improving the documentation

about existing operating system features. As of this writing the HTML documentation

may be read at http://embedded-xinu.readthedocs.org/en/latest/.

As of this writing the Wiki is still available, but it may soon be redirected to the new

documentation.

The API documentation currently consists of documentation, primarily for function

behavior, that is automatically generated from comments in the source code using

Doxygen [61]. During my work with Embedded Xinu, I found that many functions

were documented incorrectly or incompletely, so I have worked to improve this. As a

result it should be easier for new programmers to understand and work with the source

code.

2.4 Multi-platform support
Although Embedded Xinu was originally written for just one platform (the Linksys

WRT54GL router), it has since been ported to other platforms, such as other MIPS-

based routers and the Raspberry Pi. Consequently, like in many other operating systems,

some subroutines in Embedded Xinu are implemented differently depending on the

platform.

Platform-dependent code is organized by placing it in subdirectories of arch/ or

platforms/ directories. Each platform has its own subdirectory in each platforms/
directory, but multiple platforms that share the same underlying CPU architecture, such

as ARM, can share the files in the appropriate arch/ subdirectory.6 platforms/
and arch/ directories can be found in three places:

• loader/, for architecture or platform-specific startup code;

• system/, for architecture or platform-specific runtime code such as interrupt

handling, thread context setup, and context switching;

• compile/, for architecture or platform-specific configuration files, such as the

file describing the static device table (see Section 2.1.3).

The list of currently supported platforms can be found in the documentation dis-

tributed with Embedded Xinu.

6 The arch/ directories are something I added. They reduce code duplication among multiple

MIPS and ARM platforms and make it easier to port Embedded Xinu to new platforms with these CPU

architectures.
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2.5 Development, code access, and compiling
Previously, Embedded Xinu was developed with the help of the Subversion version

control system, using a private Subversion repository hosted by a server at Marquette

University. However, to open Embedded Xinu development to more developers and

move to a more advanced, distributed version control system, I (in coordination with

previous students who had worked on Embedded Xinu) moved the sources over to

the Git version control system, hosted in a repository publicly available on Github at

https://github.com/xinu-os/xinu. As a result, is now easy for anyone to

obtain the latest development sources of Embedded Xinu and optionally modify the

code for their own purposes. It is also now easier for developers to work on temporary

or experimental features without interfering with the main code, since Git features easy

branching and merging.

The details of using Git are outside the scope of this thesis. Many resources are

freely available online, and much documentation is distributed with the Git software

itself. However, once Git has been installed on a UNIX or Linux system, the Embedded

Xinu repository can be cloned into the ./xinu/ directory by running the following

command:

$ git clone https://github.com/xinu-os/xinu

Downloads of stable versions of Embedded Xinu are still available on the old

website at http://xinu-os.org/Downloads, but as of this writing there is no

stable version that supports the Raspberry Pi.

Building Embedded Xinu requires several de-facto standard tools, such as a GCC

cross compiler targeting the appropriate CPU architecture and the make utility.7 A

cross compiler refers to a compiler that targets a CPU architecture that is not the same

as the CPU architecture on which the compiler runs.8 The Raspberry Pi uses an ARM

processor, so compiling XinuPi requires a GCC cross compiler targeting the ARM

architecture, specifically the arm-none-eabi target.9

Once the needed tools have been installed, Embedded Xinu can be compiled by

running a command similar to the following:

$ make -C compile/ PLATFORM=arm-rpi

The -C compile/ option tells the make utility to process the Makefile in the

compile/ directory rather than the current directory. The PLATFORM=arm-rpi

7The build process also assumes a UNIX-like host system, so Microsoft Windows can only be used if

Cygwin is installed.
8Although some compilers, such as clang, can natively produce code for multiple CPU architectures,

a given installation of GCC can only produce code for one CPU architecture.
9arm specifies the ARM architecture, whereas none-eabi specifies that the compiler shall produce

bare-metal code compatible with the ARM Embedded Application Binary Interface, part of which is the

ARM Procedure Call Standard[12].
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option sets the platform for which to compile Embedded Xinu. arm-rpi stands for

ARM (Raspberry Pi); another possibility is wrt54gl (Linksys WRT54GL).

The compilation will produce the file(s) needed to boot Embedded Xinu on the target

platform. As an example, for the Raspberry Pi this will be the file compile/xinu.boot,

which will be a raw binary image containing the kernel’s code and data. This file must

be copied to kernel.img on the FAT32 partition of the memory card inserted into

the Raspberry Pi.10

More details about compiling Embedded Xinu, including acquiring or building an

appropriate cross-compiler, can be found in the official documentation, especially the

Getting Started page, which I have rewritten.

10Although the Raspberry Pi can only boot from memory card, indirect ways to start XinuPi do exist;

for example, see Chapter 8.
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Chapter 3

The Raspberry Pi

3.1 Motivation and history

Despite the increasing availability of personal computers, many students entering

college today, at least in some places, do not seem have more programming experience

than typical students in the 1990s did, other than possibly in web programming [42].

Various factors, such as the high prevalence of point-and-click interfaces and the

increasing complexity of modern hardware may be contributing to this trend. The

Raspberry Pi is primarily an attempt to get more kids interested in programming and

revive the hobbyist community by offering a low-cost, convenient, and well-supported

platform for programming, or anything else a Linux system might be used for.

The Raspberry Pi was designed and is being sold by the Raspberry Pi Foundation, a

registered U.K. charity [42]. Two models are available: the Model A, which costs $25,

and the Model B, which costs $35. The first units were produced in early 2012, and

since then over 2.5 million have been sold as of March 2014 [53]. Production started in

China but has since moved to the U.K [55]. The Raspberry Pi is sold online.

To maintain its low cost, the Raspberry Pi takes advantage of low-cost hardware

often used in modern embedded systems. Specifically, it uses a system-on-a-chip that

integrates a CPU (Central Processing Unit), GPU (Graphics Processing Unit), RAM

(Random Access Memory), and various peripheral devices into a single low-power

chip in the center of the board. Furthermore, the Raspberry Pi itself is just a board,

and buying one may or may not (depending on the package) include hardware or

accessories necessary for actually using it. These accessories include a microUSB

charger, a monitor, a mouse, and a keyboard, all of which are assumed to be already

available to the user, bought separately, or else bought in a convenience package with a

Raspberry Pi board.

Although the Raspberry Pi was originally designed for kids [42], it has attracted a

strong hobbyist community. Hobbyists use the Raspberry Pi for various purposes such

as automation, media centers, servers, gaming, electronics projects, and programming.

There is an increasing number of formal publications regarding the Raspberry Pi, but
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the largest amount of information can be found on the official Raspberry Pi forums

[7]. A full discussion of the uses of the Raspberry Pi is beyond the scope of this thesis,

which focuses on “bare-metal” programming in the context of porting an operating

system.

The Raspberry Pi is primarily intended to run a Linux-based operating system,

which is a good fit for high-level programming and provides useful experience with a

UNIX-like operating system. Other operating systems such as FreeBSD [58], Plan 9

[57], and RISC OS [51] have also been ported to the Raspberry Pi. However, none of

these operating systems provides the systems-level educational focus that Embedded

Xinu does.

3.2 Hardware

3.2.1 Board overview
The Raspberry Pi is a credit-card-sized circuit board which measures 85.60mm × 56mm

× 21mm and has a mass of 45g [40]. Schematics for various models and revisions of the

circuit board have been published by the Raspberry Pi Foundation [54]. At the center of

all versions of the board is the BCM2835 System-on-a Chip (SoC), which contains the

CPU, GPU, memory, and various peripherals. Around the edges of the board are various

connectors, such as GPIO pins, RCA video, HDMI, MicroUSB (power only; data pins

are not connected), 3.5mm TRS Audio, two USB ports (only one on the Model A), a

memory card slot, and an Ethernet port (Model B only). Figure 5 shows a diagram of

the major components of the Raspberry Pi.

The Raspberry Pi has no power switch, “on button”, or “off button”. To turn it on,

the user simply must plug in a power source. To turn it off, the user simply must unplug

the power source. The Pi can be powered through the MicroUSB port (recommended

by the Raspberry Pi Foundation), through the GPIO pins, or through USB port back-

power. The Pi requires 300–700 mA at 5V, depending on several factors such as the

USB devices being powered. The Ethernet controller is a USB device and consumes a

significant amount of power if it is enabled on the Raspberry Pi Model B [6].

3.2.2 BCM2835 SoC
The BCM2835 SoC — the Broadcom 2835 System-on-a-Chip — contains the most

important components of the Raspberry Pi, such as the CPU, GPU, and memory.

The CPU on the BCM2835 is an ARM-architecture processor, specifically an

ARM1176JZF-S processor of the ARMv6 architecture revision. ARM processors are

extremely widely used in electronic devices, including most cell phones, and are known

for being inexpensive and power-efficient. The ARM architecture is extensively doc-

umented by ARM Ltd. in the ARM Architecture Reference Manual [10] as well as in

reference manuals for specific ARM implementations such as ARM1176JZF-S [11].
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Figure 5: Diagram of the Raspberry Pi Model B. Image credit: Raspberry Pi Founda-

tion; Creative Commons attribution and share-alike [41]. The chip labeled “512MB

RAM, CPU & GPU” is the BCM2835. In real life it does not actually say “Broadcom”

on it, since the chip actually consists of a memory package, provided by a different

company such as Hynix or Samsung, physically stacked on top of a Broadcom package

using package-on-package technology. The unlabeled square chip above and right of

the BCM2835 is the SMSC LAN9512 USB 2.0 Hub and Ethernet Controller.
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Since ARM processors are based on a RISC (Reduced Instruction Set Computing)

design, programming for them at the assembly language level is slightly more straight-

forward than for other microprocessor architectures such as x86. However, the ARM

architecture has still evolved a significant amount of complexity.

The GPU on the BCM2835 is a Broadcom VideoCore IV. Compared to the CPU,

little is known about it because it is a proprietary Broadcom design for which no official

documentation exists for end users.1 Still, the GPU is made available to Linux for

displaying graphics, and also video decoding if the user buys the appropriate license

keys. According to a project which has attempted to reverse engineer aspects of the

VideoCore, the VideoCore actually contains its own dual-core CPU which can run

scalar and vector programs, as well as an image sensor pipeline and “Quad-Processor

Units” which provide 24 GFLOPS compute performance for coordinate, vertex, and

pixel shaders [28]. The VideoCore is believed to run its own operating system called

VideoCore OS that is based on a proprietary real-time operating system called ThreadX,

and one project has succeeded in reverse engineering the hardware enough to run

custom code on it [29]. Additional information about the VideoCore may be gleaned

from Linux code that interacts with it and from Broadcom U.S. patents dealing with an

unnamed multimedia processor that may be the VideoCore [8].

Luckily, incomplete knowledge of the VideoCore is not very consequential for

Embedded Xinu because the VideoCore is largely out of the picture when Xinu is

running on the ARM processor. It is only really needed for graphics. (See Section 9.2

for more details.)

The BCM2835 also includes RAM (random access memory) and various peripheral

devices. The amount of RAM was originally 256 MiB on all models of the Raspberry

Pi but has been increased to 512 MiB on the Raspberry Pi Model B [56]. Some details

about peripheral devices, such as the PL011 UART, system timer, interrupt controller,

and USB controller, can be found in a datasheet[16] released by Broadcom. However,

many peripheral devices are not well documented.

3.2.3 Memory card
The Raspberry Pi contains a slot into which the user can insert a memory card which

may be either an SD (Secure Digital) card or MMC (MultiMediaCard). Although a

purchase of a Raspberry Pi does not necessarily include a memory card (to keep costs

down), the designers intended that an inserted memory card provide the Raspberry

Pi’s main nonvolatile storage. In addition, an inserted memory card is essential for the

Raspberry Pi’s boot process.

1 This paragraph expresses the historical view and does not account for Broadcom’s very recent

(February 28, 2014) release of register-level documentation for the VideoCore IV graphics engine and

source code for the VideoCore IV 3D graphics subsystem used in the BCM21553 3G integrated baseband

SoC [52]. Analyzing this release would not be straightfoward, partly because it does not, in fact, include

the source for the start.elf blob that actually runs on the BCM2835. However, this documentation

and source release is seemingly a huge step forward for better understanding of the VideoCore.
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Software can read from, write to, or detect a memory card by using the Arasan Ex-

ternal Mass Media Controller exposed in the peripheral address range of the BCM2835.

The Arasan controller mostly, but not completely, conforms to the SD Host Con-
troller Specification[50]. In addition, the Arasan controller is partially documented by

Broadcom [16], but the original Arasan documentation does not appear to be publicly

available.

3.2.4 USB and networking

Like many modern computer systems, the Raspberry Pi relies heavily on USB (Universal

Serial Bus) to attach various devices, such as keyboards and mice. The Raspberry Pi

Model B has two USB ports and one Ethernet port, whereas the Raspberry Pi Model

A has one USB port and no Ethernet port. When running Linux, both Raspberry Pi

models are compatible with a wide range of USB devices.

At the hardware level, both Raspberry Pi models support USB through the “Syn-

opsys DesignWare Hi-Speed USB On-the-Go Controller” included in the BCM2835

[16]. This USB controller has no publicly available documentation, which has impeded

efforts to write software that uses it; however, in Chapter 5, I describe my efforts to do

exactly this.

Regardless of the status with documentation, it is known that the USB controller

is associated with a single “host port” that represents a port on the USB root hub —

that is, a link to the root of the tree of USB devices that are located on the Universal

Serial Bus at any given time.2 On the Model A, the host port is connected directly to

the USB port accessible to the user, whereas on the Model B the host port is internally

connected to a SMSC LAN9512 USB 2.0 Hub and Ethernet Controller. The internal

hub of the SMSC LAN9512 then has three USB ports, two of which correspond to the

externally visible USB ports on the Model B and one of which is used internally for the

Ethernet device itself. In Chapter 6, I describe my efforts to write a driver that controls

this Ethernet device.

3.2.5 Booting

When power is applied, the Raspberry Pi initially runs firmware on the VideoCore co-

processor. The firmware loads two auxiliary files, the main operating system kernel, and

an optional configuration file from the inserted memory card. (The “main” operating

system here refers to the operating system, such as Linux or Embedded Xinu, that gets

started on the ARM processor, as opposed to Broadcom’s proprietary code that runs on

the VideoCore.)

More specifically, the memory card must contain an MS-DOS-style partition ta-

ble with at least one FAT32-formatted partition containing the necessary boot files

2See Section 5.2.1 for information about USB topology in general.
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in its root directory. The boot files include two3 files provided by Broadcom —

bootcode.bin and start.elf — along with the user-provided kernel.img
[44]. bootcode.bin and start.elf are both binary files that cannot easily be

modified or disassembled because they contain code that uses one of the VideoCore’s

undocumented instruction sets [2]. Furthermore, according to Broadcom’s license

file, these files may be redistributed but not modified [27]. The user-provided file

kernel.img, on the other hand, is ARM code that the firmware loads and starts

at memory address 0x8000. In addition, the user may provide an optional file

config.txt to customize certain boot parameters, such as the physical memory

split between the ARM and VideoCore [21].

bootcode.bin, start.elf, and other VideoCore-related files may be down-

loaded from a Git repository maintained by the Raspberry Pi Foundation [27].

3.3 Documentation
Various guides, tutorials, blogs, and even published books are readily available for users

of the Raspberry Pi. However, these resources almost always assume the Raspberry

Pi runs a Linux-based operating system. As hinted at by Section 3.2.2, Section 3.2.3,

and Section 3.2.4, lower-level details about the Raspberry Pi hardware are sometimes

not readily available. Basic information about the ARM-accessible peripherals can

be found in a datasheet released by Broadcom [16]. However, other details — for

example, most information about the VideoCore — are undocumented. In some cases,

the best information exists in forum posts by Raspberry Pi Foundation members who

are familiar with the board’s design and have access to non-public documentation from

Broadcom, Synopsys, and/or Arasan [21][2][1][3]. In other cases, the best information

exists in the logic contained in the C source code of Linux drivers [49][43][33].

Consequently, this thesis attempts to clarify some aspects of the Raspberry Pi

hardware that are not well documented elsewhere. However, due to space limitations,

lack of information, and the high complexity of certain devices, it still cannot fully

document the Raspberry Pi hardware.

3Originally, a third file, loader.bin, was required as well. However, with the newest firmware

files, loader.bin is no longer required.

26



Chapter 4

Porting the Core Operating System

This chapter discusses the work that was necessary to get a basic Embedded Xinu port

running on the Raspberry Pi. The scope of this chapter includes the early booting of

the operating system, functional preemptive multitasking, and support for basic textual

input/output over a serial connection. USB support and networking support are not

considered here (see chapters 5 and 6).

I was the primary contributor to this portion of the XinuPi project. However, Tyler

and Farzeen also made contributions, and some parts were based on prior work on

Embedded Xinu.

4.1 Loader
In Embedded Xinu, the loader is assembly language code responsible for very early

initialization of the system. The loader begins with the first instruction executed in the

kernel and ends when control is passed to nulluser(), the platform-independent C

startup code. Note that by this definition, nulluser(), which is primarily responsible

for initializing device drivers and platform-independent operating system structures

before entering an infinite loop, is not considered part of the loader. Many operating

systems share this same general design; for example, Linux begins by running platform-

dependent startup code before passing control to the start kernel() C procedure.

Embedded Xinu’s loader differs in being simpler, since its only goal is to set up a usable

C execution environment as fast as possible.

Tyler Much, Farzeen Harunani, and I implemented the loader for XinuPi. It is

located in loader/platforms/arm-rpi/start.S. This assembly language

file is compiled into an object file and linked into the very beginning of the kernel image

at address 0x8000, which is the address at which the Raspberry Pi firmware loads

the kernel image. As a result, when the firmware passes control to XinuPi, execution

begins at the first assembly language statement in start.S.

The first major task of XinuPi’s loader is to set up the ARM exception vector table

by copying it from a location in the kernel image to memory address 0. This table
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0x00000000 0x00000032 0x00008000 0x00039000 0x0003B000 0x08000000 0x10000000

ARM exception table Unused XinuPi kernel Stack of null thread Memheap VideoCore memory

Figure 6: Example physical memory map (RAM only, not to scale) when XinuPi is

running on the Raspberry Pi.

associates code with different ARM exceptions, and I will discuss it in more detail in

Section 4.2. Figure 6 shows this table in its final location.

The next major task of XinuPi’s loader is to zero the .bss section of the in-memory

kernel image. The .bss section contains C variables that were declared with static

storage duration but not explicitly initialized. According to section 6.7.8.10 of the C99

standard [63], such variables must be initialized to zero before a C program actually

starts running.1 A C compiler could implement this behavior by explicitly including

the zeroes in the resulting object file. However, modern compilers such as GCC save

space in the resulting object file by not explicitly allocating these variables and instead

placing them in the .bss section, which is expected to be expanded and zeroed at

runtime. In XinuPi, the loader is responsible for this task.

The last major task of XinuPi’s loader is to reserve memory for operating system

use. All memory after the end of the kernel image up to the region reserved by the

firmware for the VideoCore is available. Out of this available memory, XinuPi’s loader

sets aside a small chunk for the stack of the “null thread”, which runs the nulluser()
C startup code and becomes the first thread. The loader stores the memory address

of this stack in sp, the stack pointer register of the ARM processor, before entering

nulluser(). This is necessary because C code must have a stack available to

execute.2 However, before doing this, XinuPi’s loader reserves the remaining memory

for the memheap, which is the region of memory that Embedded Xinu uses for dynamic

memory allocations.

Implementing the loader required some degree of familiarity with ARM processors,

including the exception handling model and the assembly language. ARM Ltd. provides

this information in their extensive documentation for the ARM architecture in general

[10] as well as for specific ARM implementations [11]. In addition, non-official

information about ARM programming is widely available online due to the widespread

use of ARM processors in embedded systems.

1Actually, pointer variables must be initialized to the implementation-defined null pointer representa-

tion, but this happens to be all zero bits on virtually all modern implementations.
2Technically, this is not a requirement of the C language itself, but rather a characteristic of the

specific implementation provided by GCC compiling for ARM processors. However, the use of a stack is

ubiquitous across modern CPU architectures.
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4.2 Interrupt handling
Interrupt handling is an essential part of almost all modern operating systems. At the

hardware level, an interrupt is an electrical signal that informs the CPU that something

has happened that needs its attention — for example, the expiration of a timer or the

completion of a read from or write to a hardware device.

On ARM architectures, interrupt handling can be divided into several areas of

concern:

1. The standard ARM mechanism for handling exceptions;

2. The standard ARM mechanism for temporarily disabling interrupts;

3. A hardware implementation-defined mechanism for enabling or disabling in-

terrupts from specific devices and determining which device(s) have interrupts

pending when the generic IRQ exception is received;

4. Actually responding (in software) to an interrupt from a specific device.

The first subsection below describes (1) and (2), the ARM-specific details. The

next subsection describes (3), which on the Raspberry Pi is the BCM2835-specific

details. Concern (4) is device-specific and is dealt with in other chapters and sections

(e.g. Chapter 5 for USB, Section 4.3 for the hardware timer).

4.2.1 ARM interrupt handling
The ARM exception model is common to all ARM-based platforms and is not specific

to the Raspberry Pi. Therefore, the discussion here (and the corresponding code) is also

applicable to other ARM-based platforms to which Embedded Xinu might be ported in

the future.

The ARM architecture defines a number of exceptions, each of which corresponds

to a different type of asynchronous event. The two exceptions dealing with interrupts

are the IRQ (Interrupt Request) exception and FIQ (Fast Interrupt Request) exception
[10].

Normally, when an ARM processor receives an electrical interrupt signal, an IRQ

exception is generated. Software or hardware can optionally prioritize interrupts from a

specific device by assigning them to the FIQ exception rather than the IRQ exception.

However, because the use of the FIQ exception is optional from the viewpoint of

software running on the Raspberry Pi, for simplicity I have not used it in XinuPi and do

not consider it further in this thesis.

As documented in Section A2.5.6 of the ARM Architecture Reference Manual [10],

bit 7 of the ARM cpsr (Current Program Status Register) is 0 if and only if the IRQ

exception can currently be received by software. If the ARM processor receives an IRQ

exception while this bit is 1, the exception is delayed until this bit is changed to 0, at
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which point the IRQ exception occurs immediately. Since this bit can be modified by

software using the msr and mrs instructions3, this bit provides a way to implement

the enable(), disable(), and restore() procedures that are available in the

ports of Embedded Xinu to other architectures, such as MIPS. In my implementation of

these procedures, enable() sets bit 7 of the cpsr to 1, disable() sets bit 7 of the

cpsr to 0 and returns the old value of the cpsr, and restore() restores bit 7 of the

cpsr to the value specified in the provided mask which was obtained by a prior call by

disable(). The disable() and restore() subroutines in particular are used

in many places in Embedded Xinu to protect critical regions of code throughout which

an interrupt cannot occur, otherwise a race condition would result. Such race conditions

arise because Embedded Xinu is a preemptive multitasking operating system and the

CPU can be rescheduled to another thread whenever the timer interrupt occurs.

When an ARM processor receives an exception that is not blocked by the settings

in the cpsr, it enters an exception-specific mode and branches to one of a number of

fixed memory addresses known as exception vectors [10]. By default, ARM processors

expect that the table of exception vectors, with one entry per exception type, be located

in consecutive words at physical memory address 0. Operating systems are expected

to install an exception handler for every exception by writing an appropriate ARM

instruction4 to the corresponding exception vector. In XinuPi, this is done in the loader

(see Section 4.1). However, XinuPi is currently only concerned with the IRQ exception,

which will be discussed below.

In the IRQ exception vector, XinuPi’s loader installs a pointer to a hand-coded

ARM assembly procedure irq handler(). This procedure, which I wrote, is shown

in Figure 7. It is the top-level interrupt handling routine and is essentially a wrapper

around the C procedure dispatch(). Excluding the dispatch() implementation,

irq handler() is not Raspberry Pi-specific and should be applicable to any ARM

platform to which Embedded Xinu might be ported.

When the ARM processor has started processing an IRQ exception and has branched

to irq handler(), it has already automatically entered a special processor mode

called IRQ mode. IRQ mode uses banked registers for sp (stack pointer) and lr
(link register), which means that accesses to these named registers logically access

a different location in IRQ mode than in other processor modes. The other general-

purpose registers are not banked, which means that they still contain the values they

contained when the processor received the IRQ exception. To avoid corrupting the state

of the interrupted thread, irq handler() must save the values of any non-banked

registers that it needs to use. Because it calls the C function dispatch() using the

ARM Procedure Call Standard [12], registers r0 – r3, r12, and lr may be clobbered

3msr means “Move to system control coprocessor from ARM register” and mrs means “Move to

ARM register from system control coprocessor”. In this terminology, the cpsr is considered to be one of

the system control coprocessors, whereas “ARM register” refers specifically to one of the general-purpose

registers. The cpsid (Change Program State Interrupt Disable) instruction can also be used to modify

the cpsr.
4ARM is a RISC architecture that uses a fixed-size instruction coding (4 bytes per instruction).
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1. irq_handler:
2. sub lr, lr, #4
3. srsdb #ARM_MODE_SYS!
4. cpsid if, #ARM_MODE_SYS
5. push {r0-r4, r12, lr}
6. and r4, sp, #4
7. sub sp, sp, r4
8. bl dmb
9. bl dispatch
10. bl dmb
11. add sp, sp, r4
12. pop {r0-r4, r12, lr}
13. rfeia sp!

Figure 7: The top-level interrupt handling routine for ARM ports of Embedded Xinu.

See the original in system/arch/arm/irq handler.S for the full comments;

here I give only a brief walkthrough. Line 1 corrects the link register, which is necessary

because of a quirk in how ARM processors enter the exception-handling code. Lines 2

and 3 save the return state on the IRQ mode stack and enter System mode. Line 5 saves

any registers that may be clobbered by dispatch() on the System mode stack. Lines

6 and 7 ensure the stack pointer is 8-byte aligned before calling dispatch(). Lines 8

and 10 bracket the call to dispatch() with data memory barriers, which guarantee

proper ordering of memory accesses to peripherals. Without them, it is theoretically

possible for peripheral accesses of the interrupted thread and the interrupt handling

code to be mixed up. Line 11 returns the stack pointer to its original alignment, line 12

restores saved registers, and line 13 returns control to the currently executing thread

using the saved return state.
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(i.e. their contents overwritten) and therefore must be saved and restored around the

call to dispatch().

An additional complication in irq handler() arises from the fact that IRQ

mode is designed to use a separate stack. Although this is a convenient feature that

automatically prevents stack overflows that could be caused by executing the interrupt

handler using the stack of the currently running thread, it also adds more complexity

because it prevents straightforward rescheduling of a thread from an interrupt handler.

Since Embedded Xinu is designed for simplicity, I decided the most straightforward

solution would be to have irq handler() change the processor mode back to the

mode in which the processor normally operates. Thus, XinuPi runs interrupt handlers

on the stack of the currently executing thread, and interrupt handling code must take

care to use limited stack space.

More details about this aspect of interrupt handling can be found in the source code

itself in the file system/arch/arm/irq handler.S.

4.2.2 BCM2835 interrupt handling
The C subroutine dispatch() is responsible for passing control to more specific

interrupt handling subroutines based on which IRQs are currently pending. (The usage

of the word “IRQs” here refers to specific interrupt request lines, as opposed to the

generic IRQ exception which occurs when any of these IRQs is received.) Each such

IRQ corresponds to a specific device or hardware module that can issue interrupts. This

portion of interrupt handling is specific to the BCM2835 SoC (System-on-a-Chip) used

on the Raspberry Pi because it relies on a memory-mapped interrupt controller provided

on the SoC. This interrupt controller is documented (but not particularly well explained)

in Section 7 of Broadcom’s BCM2835 ARM Peripherals datasheet [16]. I shall refer to

this interrupt controller as the “BCM2835 ARM Interrupt Controller”, with the “ARM”

distinction being needed because, although not officially documented, the BCM2835

has a separate interrupt controller for the VideoCore [30].

ARM-accessible IRQs on the BCM2835 are of two types: ARM-specific IRQs

and shared IRQs. The latter are shared between the ARM and VideoCore and can be

received by either. A total of 8 ARM-specific IRQs and 64 shared IRQs are available.

XinuPi maps these two types of IRQs into a single continuous range such that the 64

shared IRQs are numbered 0–63 and the ARM-specific IRQs are numbered 64–71.

Table 1 shows the meanings of some of the important IRQs.

In the initial hardware state, all IRQs are disabled, so the ARM processor cannot

receive any IRQ exceptions. To enable an IRQ, software must write 1 to the correspond-

ing bit in one of the three Enable registers of the BCM2835 ARM Interrupt Controller

(shown in Table 2). In XinuPi, this is implemented in enable irq(), which takes in

the number of the IRQ to enable. After doing this, the ARM processor will receive an

IRQ exception when the corresponding device electrically asserts its interrupt request

line. In XinuPi, this will eventually result in a call to dispatch(), which checks the

Pending registers of the BCM2835 ARM Interrupt Controller (shown in Table 2) to
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IRQ Device Notes
0 System Timer Compare Register 0 Do not enable this IRQ; it’s already used by the

VideoCore.

1 System Timer Compare Register 1 See Section 4.3.

2 System Timer Compare Register 2 Do not enable this IRQ; it’s already used by the

VideoCore.

3 System Timer Compare Register 3 See Section 4.3.

9 USB controller This is the *only* USB IRQ because all commu-

nication with USB devices happens through the

USB controller. See Section 5.3.4 for details.

55 PCM Audio Mentioned in Section 9.1.

62 SD host controller Mentioned in Section 3.2.3.

Table 1: Incomplete list of BCM2835 IRQ numbers, specifically the ones that have

been tested as part of the XinuPi project. The full list of IRQ numbers is not officially

documented, but it can be found declared in a Linux header [15]. In the table, I use the

numbering scheme used by both Embedded Xinu and Linux, where the shared IRQs are

numbered 0–63. The ARM-specific IRQs (none shown) would be numbered starting at

64.

determine which IRQs are pending. For each pending IRQ, dispatch() calls the

corresponding interrupt handling function, which is typically part of a device driver.

Each such interrupt handling function is responsible for clearing the source of the IRQ

using a device-specific method. For example, when the timer interrupt occurs, the

IRQ-specific interrupt handling function is clkhandler(), and it clears the IRQ by

writing to a certain bit in the BCM2835 System Timer registers (see Section 4.3 for

more details of this particular device).

More details about this aspect of interrupt handling can be found in the source code

itself in the file system/platforms/arm-rpi/dispatch.c.

4.3 System timer
For any operating system to support preemptive multitasking, a hardware timer that

can interrupt the CPU at programmable times must be available. On each platform,

Embedded Xinu encapsulates all interaction with the hardware timer into two functions:

• void clkupdate(unsigned long cycles); — schedules a timer in-

terrupt to occur after the specified number of additional timer cycles have elapsed.

• unsigned long clkcount(void); — returns the number of timer cy-

cles elapsed since the timer last reset or overflowed.

On the Raspberry Pi, the BCM2835 System Timer can be used to implement

these two functions. This timer, which is a memory-mapped peripheral, is partially
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Offset Name Description
+0x200 IRQ basic pending Bitmask of pending ARM-specific IRQs, as well

as additional bits (not currently used by XinuPi)

to accelerate interrupt handling

+0x204 IRQ pending 1 Bitmask of pending shared IRQs 0–31

+0x208 IRQ pending 2 Bitmask of pending shared IRQs 32–63

+0x20C FIQ control An IRQ number can be written to this register to

cause the FIQ exception to be issued instead of

the IRQ exception; not currently used by XinuPi

+0x210 Enable IRQs 1 Write 1 to the corresponding bit(s) to enable one

or more shared IRQs in the range 0–31

+0x214 Enable IRQs 2 Write 1 to the corresponding bit(s) to enable one

or more shared IRQs in the range 32–63

+0x218 Enable Basic IRQs Write 1 to the corresponding bit(s) to enable one

or more ARM-specific IRQs

+0x21C Disable IRQs 1 Write 1 to the corresponding bit(s) to disable one

or more shared IRQs in the range 0–31

+0x220 Disable IRQs 2 Write 1 to the corresponding bit(s) to disable one

or more shared IRQs in the range 32–63

+0x224 Disable Basic IRQs Write 1 to the corresponding bit(s) to disable one

or more ARM-specific IRQs

Table 2: BCM2835 ARM Interrupt Controller registers, located at physical memory

address 0x2000B000. Note that the offsets start at 0x200, not 0x00. The purpose

(if any) of the first 0x200 bytes is undocumented.

CS

+0x00

CLO

+0x04

CHI

+0x08

C0

+0x0c

C1

+0x10

C2

+0x14

C3

+0x18

Figure 8: BCM2835 System Timer registers, based at physical memory address

0x20003000. CLO and CHI make up the 64-bit free running counter. C0 through C3
are the output compare registers, but only C1 and C3 are available to the ARM.
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documented by Broadcom [16]. It has a 64-bit free-running counter, shown as CLO
(Clock Low) and CHI (Clock High) in Figure 8, that contains a value that monotonically

increases at a rate of 1,000,000 cycles per second. Directly following the 64-bit counter

are four 32-bit “output compare” registers that software can set to trigger a timer

interrupt to occur when CLO matches the programmed value. Directly preceding the

64-bit counter is the 32-bit Timer Control/Status register (CS). In that register, software

must set the bit corresponding to the output compare register index (0—3) to clear the

corresponding timer interrupt.

A caveat not documented in [16] is that the VideoCore co-processor uses the output

compare registers of indices 0 and 2 for itself, thereby leaving only the ones with

indices 1 and 3 available for the ARM. However, Embedded Xinu only needs one such

register anyway. Still, the presence of two separately-controlled microsecond-accuracy

timers, using different interrupt lines, could make it possible to implement a variety

of embedded and real-time software for the Raspberry Pi. Furthermore, Broadcom’s

documentation describes an additional timer, the “ARM Timer”, that is also available to

software [16].

4.4 Creating and switching between threads
Operating systems supporting multiple threads must be able to create new threads as

well as switch between threads. The low level details of these tasks must be imple-

mented differently on each CPU architecture. Some prior work had been done on these

details for potential ARM ports of Embedded Xinu. In particular, some students at the

Rochester Institute of Technology have worked to port Embedded Xinu to several ARM

platforms, including the Raspberry Pi [32]. However, I found that their code relevant

to the thread implementation was not well explained and contained at least two bugs

(the code did not correctly set the interrupt state of new threads, nor did it maintain the

8-byte stack alignment required by the ARM Procedure Call Standard [12]). Therefore,

I ended up re-implementing the low-level details regarding multithreading. I also

refactored the create() subroutine, which is responsible for creating new threads, to

separate the platform-dependent portion into a new setupStack() subroutine. This

reduced code duplication among the supported Embedded Xinu platforms.

More general information about Embedded Xinu’s threading model can be found in

Section 2.1.2. Here I discuss my implementations of setupStack() and ctxsw()
for ARM platforms. Briefly, setupStack() is responsible for setting up the stack

for a new thread (including setting initial CPU register values), and ctxsw() is

responsible for switching between the stacks of two threads (including saving and

restoring CPU register values). Both functions deal with an architecture-dependent

structure called the thread context record, which contains the saved values of various

CPU registers. Table 3 shows the format of this structure used in XinuPi; however,

the same format would also be applicable to any other ARM-based platform to which

Embedded Xinu might be ported.
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The ARM Procedure Call Standard [12] defines some registers as callee-save,

meaning that the called procedure is responsible for saving their values (as the caller

expects their values to be preserved), and some registers as caller-save, meaning that

the caller of the procedure is responsible for saving their values (as they are free to be

clobbered by the called procedure). Here, all callee-save registers must be included in

the thread context record because they may be clobbered by any thread and therefore

must be saved and restored across a context switch. The caller-save registers r0 –

r3 and r12 need not be included in the context record because the compiler already

assumes them to be clobbered by a call to ctxsw(); however, r0 – r3 are included

anyway because they are used to pass up to the first four arguments to the starting

procedure of a new thread. In addition, cpsr must be included in the context record to

store the current IRQs disabled/enabled state, although this state is in fact only “enabled”

for new threads because IRQs are disabled when performing a context-switch. Finally,

the sp (stack pointer) register is not included in the context record because it must be

restored before the context record can even be accessed; as such, each thread’s stack

pointer is saved in its entry in the global thread table (thrtab).

When setupStack() creates the context record for a new thread, it saves up

to the first four thread arguments in the r0 – r3 slots, sets the cpsr slot to indicate

IRQs enabled, sets the lr slot to the address of the userret() procedure (which

properly kill()s the thread following the completion of its top-level procedure), and

sets the pc (program counter) slot to the address of the thread procedure to execute. If

more than four arguments need to be passed to the thread procedure (as per the call to

create()), setupStack() places them on the stack following the context record.

When ctxsw() is called by resched() to reschedule the currently running

thread, a context record for the current thread is pushed onto its stack, the stack

pointer is loaded with the address of the stack for the next thread, and the con-

text record for the next thread is restored and popped off the stack. More details

can be found in the source itself, including comments; setupStack() is imple-

mented in system/arch/arm/setupStack.c and ctxsw() is implemented in

system/arch/arm/ctxsw.S.

4.5 Pausing, halting, and resetting
While an instance of Embedded Xinu is running, it common to reach a state in which

no threads have any work to do. When this occurs, the null thread is scheduled to run

and must simply wait until an interrupt occurs. This can easily be implemented by an

infinite loop that does nothing. However, it is desirable to also put the processor into

a low-power state to save energy. For this purpose, ARM processors provide the wfi
(Wait For Interrupt) instruction, which puts the processor into a low-power state and

waits until an interrupt has been received. XinuPi uses this instruction to implement the

pause() function, which is called by the null thread for this purpose.

A related consideration is how to properly “stop” the operating system when it
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Offset Register Notes
0x00 r0 First thread argument, caller-save

0x04 r1 Second thread argument, caller-save

0x08 r2 Third thread argument, caller-save

0x0C r3 Fourth thread argument, caller-save

0x10 r4 Callee-save

0x14 r5 Callee-save

0x18 r6 Callee-save

0x1C r7 Callee-save

0x20 r8 Callee-save

0x24 r9 Callee-save

0x28 r10 Callee-save

0x2C r11 Callee-save

0x30 cpsr Current program status register

0x34 lr Callee save, link register

0x38 pc Program counter

Table 3: Format of thread context record which I selected for use in ARM ports of

Embedded Xinu. The notes assume the ARM Procedure Call Standard [12]. r12 and

sp exist, but they are not included in the context record for reasons noted in the main

text.

has finished running, for example when all threads have terminated. Embedded Xinu

platforms must implement a halt() function for this purpose. Such a function

ideally will power off the hardware. However, the Raspberry Pi is designed to be

manually unplugged rather than powered off programatically. For this reason, the

halt() implementation for XinuPi simply disables interrupts and enters an infinite

loop, effectively preventing the system from doing anything else.5

Still another related consideration is how to programatically reset the system when

the reset shell command is run. This is not trivial to implement on the Raspberry Pi

because the board is intended to be manually power-cycled. However, I found that

it is possible to programatically reset the hardware by making use of the watchdog
timer available on the BCM2835. A watchdog timer is a hardware device including a

timer that, once programatically set, must be renewed with a certain period of time to

avoid an automatic hardware reset. Watchdog timers are present in many embedded

systems to provide a way for the system to automatically return to a working state

after a crash. On the Raspberry Pi, an intentional software reset is possible by setting

the BCM2835 watchdog timer to a very short delay, then intentionally letting it ex-

pire. Unfortunately, the BCM2835 watchdog timer is not documented in Broadcom’s

datasheet [16]. Therefore, I had to use the Linux driver [43] as a reference for the

5Unfortunately, the wfi instruction cannot easily be used to place the processor in a low power state

indefinitely because, as documented in the ARM Architecture Reference Manual[10], any interrupt will

wake the processor from wfi, even if interrupts are masked (disabled).
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software interface to the watchdog timer. The interface is quite simple, but it includes

several undocumented “magic numbers”, including the register locations, that could not

reasonably be determined in any other way.

4.6 UART driver
A UART (Universal Asynchronous Receiver/Transmitter) is a hardware device that

serves as an intermediary between system-level software and a serial port. Bytes written

to the UART by software are transmitted one bit at a time over the serial port, whereas

bits received over the serial port are accumulated and provided to software by the UART

as bytes. In other words, a UART is a circuit that translates between data in parallel

and serial forms. Software operates a UART by reading from and writing to a set of

control registers which are typically memory-mapped (e.g. located at a fixed physical

memory address). Different UART models have different control registers; common

models include NS16550-compatible UARTs and PL011-compatible UARTs.

Serial ports operated via UART are available in many embedded systems in order to

provide simple text-based access to the running operating system. Ports of Embedded

Xinu to MIPS-based routers such as the Linksys WRT54GL took advantage of two serial

ports controlled by NS16550-compatible UARTs. The Raspberry Pi offers a single

serial port which software can control using either a partially NS16550-compatible

UART or a PL011-compatible UART. Externally, the serial port is accessible through

the GPIO header (the 2 × 13 array of vertical pins clearly visible on the board). The

connection can be made through a USB-to-serial converter with 3.3V logic levels.

Tx (transmit) is GPIO pin 8 and Rx (receive) is GPIO pin 10. Ground must also be

connected to one of the ground pins, for example pin 6. Unlike the Linksys WRT54GL,

the Raspberry Pi does not require hardware modification to use the serial port.

Although the Raspberry Pi does include a UART known as the “mini-UART” that is

intended to be similar to an NS16550-compatible UART, it is in fact not fully NS16550-

compatible [16]. The use of such a nonstandard device in Embedded Xinu would be

undesirable when an alternative is available, since standard devices tend to be better

documented. Therefore, XinuPi uses the PL011 UART instead.

A team of students at the Rochester of Institute of Technology had conducted

preliminary work[32] to port Embedded Xinu to the Raspberry Pi and had already

implemented a driver for the PL011 UART, heavily based on the NS16550 UART driver

already included in Embedded Xinu. Consequently, Tyler, Farzeen, and I borrowed this

code but continued to adapt and improve it.

The PL011 UART available on the Raspberry Pi is documented by Broadcom [16],

but there are some errors in this documentation and it is not the primary reference for

PL011 UARTs, which is instead a manual published by ARM Ltd. [34]. I have made

use of both these resources in order to understand the operation of the PL011 UART

and the software interface to it.

The following only briefly summarizes Embedded Xinu’s PL011 UART driver, since
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a full explanation of the PL011 UART itself would require many pages. The driver

logically has two separate interfaces, or modes of operation. The primary interface is an

interrupt-driven interface that delegates the communication with the UART itself to the

interrupt handler, which is triggered when the UART has received a byte or has become

free to transmit another byte. Reads and writes from the software “UART device” then

only operate on in-memory buffers that are also accessed by the UART interrupt handler.

The other interface presented by the UART driver is a synchronous interface. kgetc()
polls the UART until a byte has been received, whereas kputc() polls the UART

until a byte is ready to be transmitted. The synchronous interface is primarily intended

for low-level debugging because it does not rely on functional interrupt handling.

More details about the PL011 UART driver can be found in the source itself, located

in device/uart-pl011/.
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Chapter 5

Design & Implementation of USB
Support

Like many modern computers, including many embedded systems, the Raspberry Pi

relies heavily on USB (Universal Serial Bus) to attach many types of external devices,

such as keyboards and mice. In addition, the Ethernet controller on the Raspberry Pi

Model B is actually a built-in USB device. As such, USB support is a prerequisite for

networking support on the Raspberry Pi.

Embedded Xinu did not previously have USB support. Although several students

had worked on it (on other platforms), little progress was made, and it was never a high

priority. However, for XinuPi, networking support, and in turn USB support, were high

priority features due to the fact that networking is well supported on other Embedded

Xinu platforms, such as the Linksys WRT54GL router.

This chapter deals with the design and implementation of the USB subsystem itself

and not with drivers for any specific USB devices other than hubs. However, Chapter

6 discusses the design and implementation of a USB device driver for the SMSC

LAN9512 Ethernet device, and Chapter 7 discusses the design and implementation of a

driver for USB keyboards.

5.1 Difficulties
USB is a plug-and-play bus that was designed for ease of use by end users, inexpensive

mass production of compatible hardware, and support for virtually any possible type

of device. Unfortunately, simplicity for the developer was not a major goal of USB.

Consequently, all versions of the USB specification are lengthy and complicated, and

a large amount of code must be written to add USB support to an operating system

regardless of the specific USB devices for which support is eventually desired.

The USB 2.0 specification [24] is 650 pages long.1 Certainly, not all sections are

1I do not consider USB 3.0 or later because 2.0 is the revision supported by the Raspberry Pi.

Furthermore, due to the backwards compatibility built into USB, devices supporting USB 3.0 can
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actually of interest to a USB software implementer, so I have only found it necessary

to read a subset of the full specification. But even so, it makes for a time-consuming

read. Furthermore, the USB specification does not actually standardize the specific

method by which software can send and receive messages over a USB, which is done by

communicating with a piece of hardware known as the USB host controller. Although

this information is of critical importance to software implementers, it is contained in

separate specifications for USB host controllers and sometimes is not even documented

at all. The latter is the case for the Raspberry Pi, which uses a USB controller2 known

as the “Synopsys DesignWare Hi-Speed USB On-the-Go Controller”. The software

interface to this USB controller does not conform to any standard, nor is it described

in any official (vendor-provided) publicly available documentation. Consequently,

implementing a USB host controller driver to communicate with this USB controller

required examining any and all available sources of information, including the C source

code of the vendor-provided Linux driver [49] and basic third-party drivers [20] [39].

Ultimately I was able to implement a working “USB 2.0” subsystem. However,

due to the high complexity of USB, not all aspects of USB 2.0 were implemented.

Furthermore, despite USB’s relatively high level of standardization, it is unreasonable

to implement a USB subsystem that is perfectly compatible with all real-world “USB

devices”. This is because some “USB” devices are not, in fact, fully compliant with the

USB standard. This can occur when hardware manufacturers only test their devices for

compatibility with a specific USB implementation, such as that in Microsoft Windows,

which does things in a very specific way. (Other operating systems such as Linux have

had various hacks added for compatibility with such devices.)

5.2 Introduction to USB
Before introducing the USB subsystem I implemented for Embedded Xinu, it is neces-

sary to explain the basics of USB itself. This section explains how a USB-compliant

bus, or simply USB, is arranged and how, at a high level, communication with USB

devices happens.

5.2.1 Bus topology
Fundamentally, USB is just a way to connect devices to a computer system. A USB

accomplishes this by arranging devices in a tree. Each node of the tree is a USB device.

There are two fundamental types of USB devices: hubs and functions. USB hubs can

have “child” devices in the tree, whereas functions cannot. Hubs can be “children” of

other hubs, up to a depth of 7 levels.

typically still be used by USB 2.0 hosts.
2I use the phrase “USB controller” rather than “USB host controller” here intentionally, since the

Synopsys hardware actually supports both host and device-mode features. However, for my work with

Embedded Xinu I was only concerned with host-mode features.
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The root node of the tree is the root hub, and every USB has one (although it may

be faked by the host controller driver, described later).

A USB hub provides a fixed number of attachment points for additional devices.

Each such attachment point is called a port. A USB port may be internal to the computer

system or it may be exposed to the user as a place to plug in a USB cable. From the

user’s point of view there is certainly a difference between these two manifestations of

a USB port, but from the software’s point of view there is no difference.

It is also possible that a single physical package, which a naive user might refer to

as a “USB device”, actually contains an integrated USB hub to which one or more USB

devices are attached. Such physical packages are called compound devices. A common

example of a compound device is one of Apple’s USB keyboards that provides a USB

port to attach a mouse.

Since USB is a dynamic bus, USB devices can be attached or detached from the

USB at any arbitrary time. Detaching a hub implies detaching all child devices.

5.2.2 Devices
Due to the generality of USB, a USB device can be virtually anything at all. This is

made possible in part by a highly nested design:

• A device has one or more configurations.

• A configuration has one or more interfaces.

• An interface has one or more alternate settings.

• An alternate setting has one or more endpoints.

Every device, configuration, interface, and endpoint has a corresponding descriptor
that can be read by the USB software to retrieve information about the described entity

in a standard format.

Although this highly nested design allows for complex devices, most devices are

relatively simple and have just one configuration. Furthermore, common devices have

only one interface.

5.2.3 Host controllers
USB is a polled bus, so all transfers over the USB must be initiated by the host. The

term “host” in this context means the USB software as well as the USB host controller,

the latter of which is the hardware responsible for actually sending and receiving data

over the USB and maintaining the root hub.

Since the USB specification in many cases does not standardize the exact division

of tasks between software and hardware, it is often unclear whether hardware or

software is responsible where the specification says “host”. The essential thing to
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know is that the place where the USB software meets the USB hardware is in the

USB host controller driver, which operates the USB host controller. Some USB host

controllers present standard interfaces (such as UHCI, OHCI, or EHCI— all defined in

specifications separate from the USB specification itself) to software. Others do not

present a standard interface, but instead have vendor-provided documentation and/or

a vendor-provided driver. Obviously, a standard interface is highly preferred when

independently implementing a USB host controller driver.

5.2.4 Transfers
To communicate with devices, a USB host must send and receive data over the USB

using transfers. A transfer occurs to or from a particular endpoint on a particular

interface of a particular device. Each endpoint can be used for exactly one of four

predefined types of transfers:

• Control transfers are typically used for device configuration. There are two main

unique features of these transfers. First, a special packet called SETUP is always

sent over the USB before the actual data of the control transfer, and software

needs to specify the contents of this packet. Second, every device has an endpoint

over which control transfers in either direction can be made, and this endpoint is

never explicitly listed in an interface descriptor.

• Interrupt transfers are designed for time-bounded transmission of small quantities

of data (e.g. data from a keyboard or mouse).

• Bulk transfers are designed for reliable (with error detection) transmission of

large quantities of data with no particular time guarantees (e.g. reading and

writing data on mass storage devices).

• Isochronous transfers are designed for periodic transmission of data with no error

detection (e.g. video capture).

Each USB transfer has a direction that is either device-to-host (IN) or host-to-device

(OUT). An endpoint may be restricted to transfers in a specific direction, or it may be

bidirectional.

5.2.5 Speeds
USB supports multiple transfer speeds:

• 1.5 Mbit/s (Low Speed) (USB 1.0+)

• 12 Mbit/s (Full Speed) (USB 1.0+)

• 480 Mbit/s (High Speed) (USB 2.0+)
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• 5000 Mbit/s (Super Speed) (USB 3.0+)

Due to the need to maintain backwards compatibility with legacy devices, the USB

host controller driver sometimes must take transfer speeds into account. At minimum,

it must be aware that transfers to or from devices attached at Low or Full Speed must

be performed as a series of split transactions between the host and a High Speed

hub intermediary. This design allows Low or Full Speed transfers to occur without

significantly slowing down the portion of the bus operating at High Speed.

5.3 Embedded Xinu’s USB subsystem
Now that I have presented some general information about USB, it should be possible

to understand the USB subsystem I implemented for Embedded Xinu.

5.3.1 Overview
Embedded Xinu’s USB subsystem is divided into three components, or drivers:

• The USB core driver is platform-independent code responsible for maintaining the

USB device model, performing device enumeration, and providing a framework

in which USB device drivers can be written.

• The USB hub driver is a platform-independent USB device driver that controls

hubs.

• The USB host controller driver is a platform-dependent driver responsible for

interacting with the USB host controller to actually send and receive data over

the USB to or from a particular endpoint of a USB device.

In this software architecture, all USB device drivers, including the USB hub driver,

interact with USB devices through the USB core driver, which in turn provides an

abstraction layer around the USB host controller driver. This separation of concerns is

fairly standard across all USB-enabled operating systems, since it mirrors how USB

was designed.

Embedded Xinu’s USB subsystem understands USB’s dynamic tree topology and

does not assume a fixed set of devices. Furthermore, it permits the use of control,

interrupt, and bulk transfers through a specialized API. Inevitably, these features

contrast with the main Embedded Xinu device model, which, as described in Section

2.1.3, assumes a static set of devices on which I/O may be performed through read()
and write() operations. However, Chapter 6 and Chapter 7 describe USB device

drivers that export useful functionality of their underlying USB devices as standard

Embedded Xinu devices.
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All parts of the USB subsystem were implemented entirely by me. However, I

borrowed design ideas from the USB specification [24], prior knowledge about how

other operating systems such as Linux implement USB support, and “Chadderz Simple

USB Driver for Raspberry Pi” [20]. For the host controller driver in particular, I describe

additional sources of information in Section 5.3.4.

Due to its high complexity (upwards of several thousand lines of code), I cannot

mention all details of the USB subsystem in this thesis. The reader can find additional

details in the source code itself as well as in the corresponding documentation that I

wrote for the Embedded Xinu project itself. The latter documentation is partly redundant

with this thesis, but I wrote it for a different audience and it is sometimes concerned

with different aspects of USB support.

5.3.2 USB core driver
Embedded Xinu’s USB core driver is responsible for maintaining the USB device

model (including the tree structure) and providing a framework in which USB device

drivers can be written. The USB core driver does not itself communicate with the USB

hardware but instead relies on a platform-dependent USB host controller driver for this

purpose. The USB core driver can alternatively be viewed as the software responsible

for all USB-related tasks that depend on neither specific USB devices nor specific USB

host controller implementations.

When a new USB device is detected by the USB hub driver, the USB hub driver

calls usb attach device() in the USB core driver to perform tasks common to

every USB device, such as setting the configuration and device address and reading the

device descriptor. The USB core driver then attempts to “bind” the new USB device

to each registered USB device driver, in turn. Drivers not supporting the device are

expected to return a certain status code so that the next driver can be queried.

The USB core driver provides the functions usb submit xfer request()
and usb control msg() to allow USB device drivers to communicate with the

USB devices they are controlling. usb submit xfer request() asynchronously

performs the specified type of transfer over the USB to or from the specified end-

point on the specified USB device, whereas usb control msg() wraps around

usb submit xfer request() to perform a synchronous control transfer to or

from the specified endpoint on the specified USB device.

The initialization function for the entire USB subsystem, usbinit(), is located in

the USB core driver. It is called during operating system initialization and is responsible

for registering the USB hub driver, initializing the host controller driver, and initializing

the USB device model by setting up a USB device structure for the root hub and binding

it to the USB hub driver. usbinit() is not itself responsible for enumerating the

entire USB — that is, discovering all devices attached to it. That instead proceeds

asynchronously with the help of the hub driver.

Despite being usable for supporting various USB devices, Embedded Xinu’s USB

core driver still has many limitations compared to the equivalent in other operating
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systems such as Linux. For example, it does not support isochronous transfers, per-

interface USB drivers, multiple concurrent USBs, intelligent power management, or

any features introduced later than USB revision 2.0. However, none of these features

currently have a clear need, and since Embedded Xinu is an instructional operating

system it is desirable to omit them for now.

The code of the USB core driver is mostly located in device/usb/usbcore.c.

Optional (but useful) functionality dealing with human-readable messages and strings

has been factored out into device/usb/usbdebug.c.

5.3.3 USB hub driver
Embedded Xinu’s USB hub driver is an example of a USB device driver, but it is

somewhat special in that it controls USB hubs, which have a unique role in USB. In

the USB topology (see Section 5.2.1), the path from the host to any function passes

through a nonempty sequence of hubs, each of which must rely on the hub driver to

enumerate the devices attached to it. Therefore, support for any USB device whatsoever

relies on a hub driver being available. As such, the hub driver is very much part of the

base USB subsystem itself, and I placed its source code in the same directory as the

USB core driver to prevent confusion about whether it is an optional component or not.

The source file is device/usb/usbhub.c.

The initial entry point of the USB hub driver is hub bind device(), which is

called by the USB core driver when it has configured a newly attached USB device that

may be a hub. hub bind device() is responsible for checking if the device is a

hub, and if so, then doing hub-specific setup, including one-time driver initialization,

reading the hub descriptor, powering on the ports, and submitting an asynchronous

USB interrupt transfer request to the hub’s status change endpoint.

Everything else the hub driver does happens asynchronously as a response to a status

change request being completed. Every USB hub has exactly one interrupt IN endpoint

called the status change endpoint. The hub responds on this endpoint whenever the

status of the hub or one of the hub’s ports has changed— for example, when a USB

device has been connected or disconnected from a port.

At the hardware level, when a hub has data to send on its status change endpoint, an

interrupt will come in from the USB host controller. This eventually will result in the

status change transfer being completed and hub status changed() being called.

Thus, the detection of status changes is interrupt-driven and is not implemented by

polling at the software level, at least in the hub driver. (At the hardware level, USB is

still a polled bus, but the host controller hardware and/or driver handles that.) Upon

detecting a status change on one or more ports on a hub, the hub driver then must

submit one or more control messages to the hub to determine exactly what changed on

the affected ports. However, the hub driver defers this work by passing it to a separate

thread in order to avoid doing too much synchronous work in interrupt handlers. When

this separate thread finally determines the statuses of the hub’s ports, it calls into the

USB core driver to react to the attachment or detachment of any USB devices.
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5.3.4 USB host controller driver

A USB host controller driver is responsible for actually sending and receiving data

over the USB by making use of the platform-dependent host controller hardware. The

purpose of this type of driver is to isolate differences in USB host controllers from

all other code dealing with USB. This is an appropriate software architecture since it

makes it easier to support USB on multiple platforms. However, as of this writing, the

only USB host controller driver implemented in Embedded Xinu is the one I wrote to

control the Synopsys DesignWare Hi-Speed USB On-the-Go Controller used on the

Raspberry Pi.

In the software architecture I designed for Embedded Xinu’s USB subsystem,

USB host controller drivers must implement three functions. The hcd start() and

hcd stop() functions must initialize and de-initialize the USB host controller, respec-

tively. The hcd submit xfer request() function must submit a USB transfer,

represented by a struct usb xfer request, to be asynchronously completed

with the help of the host controller. A struct usb xfer request contains the

device address, endpoint number, data buffer, number of bytes to transfer, optional

SETUP data, and a pointer to a callback function. The host controller driver executes the

callback function when the transfer has completed or failed. Additional documentation

for the USB host controller driver interface can be found in the header declaring it

(include/usb hcdi.h).

The remainder of this section deals specifically with the host controller driver for

the Synopsys USB controller used in the Raspberry Pi. Broadcom, the manufacturer

of the BCM2835 System-on-a-Chip, briefly describes the Synopsys USB controller

and notes the location of its register interface in the memory space of the BCM2835

[16]. However, Broadcom provides no documentation about the actual registers of the

Synopsys USB controller and instead redirects the reader to a document provided by

Synopsys Inc. Unfortunately, the Synopsys document is only available to Synopsys

customers, which include Broadcom but not “end users” such as myself. Because of

this as well as the fact that the interface to the Synopsys USB controller is not otherwise

documented in a standard such as EHCI, the Synopsys USB controller is de facto

undocumented.

Writing a driver for undocumented hardware is inevitably very difficult, and to

do so the programmer must rely on any and all sources of information that may be

available. In the worst case, this includes only the black-box behavior of the hardware

itself and the machine code of closed source drivers for other operating systems. But

fortunately, Synopsys has released an open source driver [49] for their USB controller.

It supports Linux, and consequently it is the driver used when typical Raspberry Pi

users run Linux-based operating systems on the board. This driver has not, however,

been accepted into the mainline Linux kernel — that is, the “official” Linux kernel

maintained by Linus Torvalds. Instead, it is only included in the fork of Linux being

maintained for the Raspberry Pi until all Raspberry Pi support has been “mainlined”.

In theory, a working open-source driver is an ideal replacement for real documenta-
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tion because the source code is unambiguous, unlike documentation written in a natural

language such as English, and necessarily operates the device successfully in some way.

However, in practice, reading and understanding the Synopsys driver was very difficult

due to its high level of complexity. Despite its conceptually simple task of relaying

USB messages between software and hardware, it still contains approximately 37,000

lines of C source code. This complexity is a result of a number of factors, including

support for different modes of operation, different transfer types and speeds, multiple

abstraction layers, support for multiple parameterizations of the same design in silicon,

and support for power management features.

Over the course of several weeks and largely concurrent with my work on the USB

core driver (Section 5.3.2) and USB hub driver (Section 5.3.3), I worked to extract the

basic hardware-software interface information from the Synopsys driver necessary to

create an independent implementation. I also referred to a limited number of drivers,

with varying levels of functionality, that have recently been implemented for the same

hardware [20][39]. However, these third-party drivers all seemed to be based on the

Synopsys driver.

One of the most useful files in the Synopsys driver was dwc otg regs.h, which

declared the register interface provided by the USB controller, including the contents of

each register. However, detailed information about how the registers actually must be

used usually was not present in the comments, so for that I had to find and examine the

actual code which accessed them.

Ultimately, my contribution is a working, well-commented driver3 to control the

USB controller on the Raspberry Pi that runs in the lightweight Embedded Xinu

environment and is approximately 20 times shorter than the corresponding Linux driver.

The difference in code length arises because my driver only supports only a carefully-

chosen subset of features and does away with unnecessary abstraction layers that were

present in the Synopsys driver. My driver also does not contain logic from the Linux

driver that I was unable to understand under the time constraints and/or found was

unnecessary to operate the device based on empirical tests. (The extent to which this

matters is an open question. Presumably, most of the unimplemented logic is not truly

necessary in a basic implementation, since my implementation is already functional

enough to support several device drivers.)

The entry point of my driver for the Synopsys USB controller is hcd start(),

which must perform the following tasks to prepare the controller to be ready to use:

1. Enable power to the USB controller by telling the VideoCore to do so, via the

same memory-mapped “mailbox” message-passing mechanism the framebuffer

(graphics) driver uses (see Section 9.2).

2. Reset the USB controller by setting a bit in the Core Reset Register, then waiting

for the hardware to clear it.

3See: system/platforms/arm-rpi/usb dwc hcd.c
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3. Enable DMA (Direct Memory Access) mode and configure dynamic FIFO loca-

tions and sizes. Explicitly configuring the dynamic FIFOs is required because the

reset values are invalid. Failing to do so will result in silent memory corruption.4

4. Software not performing USB transfers completely synchronously must enable

interrupts from the USB controller, both in the AHB Configuration Register in

the USB controller and in the BCM2835 ARM Interrupt Controller described in

Section 4.2.2. At minimum, software must enable Host Channel interrupts, which

are required for the software to be notified when USB transfers have completed,

and Host Port interrupts, which are required for the software to emulate the root

hub.

After the Synopsys USB controller is ready to use as a result of successful execution

of hcd start(), the hcd submit xfer request() function can be called to

start a transfer over the USB to or from a specific endpoint on a specific USB device.

To actually perform such a transfer, software must, briefly, do the following:

1. Program one of the 8 available host channels of the USB controller with the

parameters of the USB transfer. These parameters include the transfer type,

direction, size, packet count, device address, endpoint number, and a pointer to a

word-aligned buffer for DMA.

2. Wait for an interrupt to occur from the USB Controller. (As noted in Section

4.2.2, this uses BCM2835 shared IRQ line 9.)

3. Check the Interrupt Register, then the Host All Channels Interrupt Register, to

determine which channel(s), if any, have halted.

4. Check the Channel Interrupt Register for each halted channel to determine

whether the corresponding transfer completed successfully or failed.

The above is a simplified description and does not cover a multitude of special cases,

such as the following:

• Transfers to or from low or full-speed devices, such as most USB HID devices

(mice, keyboards, etc.) must be performed as a series of split transactions. To

tell the Synopsys USB controller to execute such a transfer, special parameters

must be set in the Split Control Register. Furthermore, on such transfers, the

controller does not act autonomously to complete the full transfer. Instead, it halts

the channel after every Start Split or Complete Split transaction, and software

must take an appropriate action, such as retrying the transaction later.

4I spent a long time debugging this problem. It is unclear to me why the parameters are wrong by

default; perhaps Broadcom made a mistake when they built (selected parameters for) the Synopsys

hardware.
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• Although USB is a polled bus, as far as I can tell the Synopsys USB controller

provides no support for hardware-based polling of devices. If an interrupt transfer

is attempted from a device, such as a hub or keyboard, that has no data to send at

the time, the controller halts the channel and sets the “NAK response received”

flag, thereby forcing software to explicitly delay for an appropriate interval for

polling.

• The Synopsys USB controller seems to have some special scheduling require-

ments related to periodic transfers and frame boundaries which I do not yet fully

understand. The Embedded Xinu driver currently works around certain problems

by automatically retrying certain transfers if they fail.

To provide more technical information about the Synopsys USB controller, I have

written detailed documentation for the essential registers in Embedded Xinu’s header file

declaring them (system/platforms/arm-rpi/usb dwc regs.h). However,

it was only possible to document the functionality actually used by the Embedded

Xinu driver, so this documentation cannot be used to, for example, write a drop-in

replacement for Synopsys’ Linux driver that will have no feature regressions.

5.3.5 Development and testing
During early development of the USB subsystem, I first implemented support for

synchronous control transfers. With only this in place, I built early versions of the core,

hub, and host controller drivers and was able to enumerate the USB on the Raspberry Pi

Model B (which as noted in Section 3.2.4 contains an internal hub) and perform generic

USB-defined configuration of attached devices.

Slightly later, I added support for interrupt transfers and made all transfers asyn-

chronous (interrupt-driven). This was accompanied by updates to all three drivers. At

this point, due to the design of USB (especially its use of hubs), I was able to test both

control and interrupt transfers at multiple speeds, as well as the hub driver, simply by

plugging in different types of USB devices, such as mice, keyboards, and flash drives.

This was true even though no actual device drivers had been implemented yet. The

USB subsystem also received more testing when I tested the SMSC9512 (Chapter 6)

and USB keyboard (Chapter 7) drivers. For example, the SMSC9512 driver was the

first code that used bulk transfers and transfered large amounts of data over the USB.

In any case, I did not have the time or resources to do formal compliance testing of

the USB subsystem. Furthermore, since the USB subsystem is strongly coupled to the

hardware, I was unable to implement any automated tests. However, automated tests of

higher-level functionality, such as networking using the SMSC9512 device, rely on the

underlying USB subsystem functioning correctly.
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Chapter 6

Design & Implementation of
SMSC9512 Driver

6.1 Background and device information

As mentioned earlier, the Raspberry Pi Model B has one Ethernet port, supported

through an integrated LAN9512 USB 2.0 Hub and 10/100 Ethernet Controller designed

by SMSC1, located on the USB. This device consists of a USB hub with three ports, two

of which correspond to the externally visible USB ports on the Raspberry Pi and one

of which is permanently connected to a vendor-specific class device that implements

the Ethernet controller. No WiFi or other network interfaces are available. Therefore,

USB support, including a hub driver, was a prerequisite to networking support on

the Raspberry Pi in order to make XinuPi competitive with previous Embedded Xinu

platforms, such as the WRT54GL router. However, once USB support was implemented,

as detailed in Chapter 5, it became possible to implement the driver for the SMSC

Ethernet controller.

The hub portion of the SMSC9512 is designed to be controlled by a USB hub

driver, and Embedded Xinu’s hub driver (described in Section 5.3.3) serves this purpose.

Therefore, the rest of this chapter deals specifically with the vendor-specific class

device attached to this hub that implements the Ethernet controller itself, which shall

henceforth be referred to simply as the SMSC9512.

The role of the SMSC9512 is to provide a bridge between the USB and the Ethernet.

This is the same role as commercially available “USB Ethernet adapters”, which are

seen by software in almost exactly the same way and some of which may even use

the same chip. The only the difference is that on the Raspberry Pi, the SMSC9512 is

attached to the USB internally.2

1SMSC stands for Standard Microsystems Corporation, now acquired by Microchip Technology.
2The SMSC9512 chip is actually clearly visible on the Raspberry Pi Model B as the largest chip other

than the BCM2835. It may be theoretically possible to remove or replace it with specialized tools, but it

clearly is intended to be part of the board itself.
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Ethernet controllers operate by sending and receiving Ethernet frames, which are the

physical-layer wrappers around networking packets (which themselves may implement

other protocols, such as the Internet Protocol). The operation of a USB Ethernet adapter

such as the SMSC9512 is therefore primarily concerned with receiving Ethernet frames

by transferring them over the USB from the USB Ethernet adapter to the USB host and

sending Ethernet frames by transferring them over the USB from the USB host to the

USB Ethernet adapter. Typically, these transfers occur to or from bulk endpoints on the

USB device, and the SMSC9512 is no exception to this.

However, actually writing a driver to control such a device requires more specific

details of how to configure the device and what protocol is used to send and receive

packets. Although there does exist a USB Communications Device Class which stan-

dardizes the operation of USB Ethernet adapters, not all real devices exactly implement

this standard, and the SMSC9512 is one of them.

SMSC provides a datasheet for the SMSC9512 [46]. However, it primarily covers

hardware details, such as the pin layout of the chip, and it only very briefly mentions

the software interface to the device. Attempts to contact SMSC9512 for access to

internal documentation were unsuccessful. Consequently, there is no publicly available

documentation for the software interface to the SMSC9512, placing it in a similar

predicament as the Synopsys USB controller described in Section 5.3.4.

Fortunately, there is a Linux driver [33], originally written by SMSC themselves,

for the SMSC9512 and other devices in the SMSC95xx series.3 Linux also contains a

driver that implements generic functionality required by all USB network devices [31].

Each of these drivers contains about half the code needed to operate the SMSC9512,

excluding the much larger amount of code in the USB subsystem itself. Therefore,

in order to implement my own driver for the SMSC9512, I had to examine these two

Linux drivers to determine the software interface to the device. This was not trivial

because the drivers contained many details that ultimately turned out to be irrelevant. In

addition, many registers and flags the SMSC Linux driver used to configure or operate

the device were not explained, so I had to test some empirically to see what they really

did. The following section describes the driver I implemented and how it controls the

SMSC9512 to offer networking support for XinuPi.

6.2 Embedded Xinu driver
The source code of the SMSC9512 driver I implemented is located in device/smsc9512/.

Like the Ethernet drivers for other Embedded Xinu platforms, it provides a static Eth-

ernet device table entry ETH0 which the networking module can read() packets

from and write() packets to. These operations get routed to etherRead() and

etherWrite(), respectively. However, as a USB device driver, the SMSC9512

3The FreeBSD operating system also contains a driver for the SMSC9512, but based on the source

code itself it was written by a third-party programmer based on the Linux driver and did not appear to be

much more useful than the Linux original.
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driver has many differences from the other Ethernet drivers that have been implemented

in Embedded Xinu.

6.2.1 Initialization

The operating system initializes SMSC9512 driver by calling etherInit(), which

is configured in xinu.conf as the init() function for ETH0. However, because

ETH0 is a static device entry in contrast to the underlying USB device (which is

dynamic, even though the device is non-removable on the Raspberry Pi, as there is

no guarantee as to when it is actually detected), etherInit() can actually do little

except register the SMSC9512 driver with the USB subsystem so that later initializations

can be performed when the device is actually detected.

Some of these later initializations occur in smsc9512 bind device(), which

checks if a newly attached USB device is the SMSC9512, and if so, does some pre-

liminary configuration (setting the MAC address to a value that is either randomly

generated or based on the board’s serial number, and enabling multiple packets per

USB transfer) and links the struct ether, which represents the SMSC9512 at

the networking level, with the corresponding struct usb device, which repre-

sents the SMSC9512 at the USB level. The driver configures the SMSC9512 by

writing to registers in its register set, which are accessible through vendor-specific

control transfers performed to or from the SMSC9512’s default control endpoint. Do-

ing this requires knowing the locations and meanings of the registers. In the file

device/smsc9512/smsc9512.h I have attempted to document some of the reg-

isters I used in the Embedded Xinu driver, since the corresponding definitions in the

Linux driver contain no documentation.

Still more initializations of the SMSC9512 occur when the operating system ac-

tually opens the Ethernet device, which results in a call to etherOpen(). This

function waits for the SMSC9512 to be asynchronously attached (if it wasn’t al-

ready), sets aside buffer space for sent and received packets, prepares one struct
usb xfer request each for bulk IN and bulk OUT USB transfers, submits the bulk

IN transfer for receiving packets, and finally enables Rx (Receive) and Tx (Transmit)

on the device.

6.2.2 Sending and receiving packets

At any point after the initializations described above have been completed, the bulk IN

transfer from the SMSC9512 may complete to indicate that one or more Ethernet frames

were received. (At a lower level, this occurs when the USB host controller interrupts

the CPU to indicate successful completion of the transfer; however, this detail can be

considered specific to the USB subsystem.) When this occurs, the USB subsystem exe-

cutes the callback smsc9512 rx complete(), which extracts the Ethernet frames

from the USB data and buffers them from for later retrieval by etherRead(). The
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$ ping 192.168.1.1 -c 10 -s 500 -i 0
PING 192.168.1.1 (192.168.1.1) 500(528) bytes of data.
508 bytes from 192.168.1.1: icmp_seq=1 ttl=64 time=0.771 ms
508 bytes from 192.168.1.1: icmp_seq=2 ttl=64 time=0.689 ms
508 bytes from 192.168.1.1: icmp_seq=3 ttl=64 time=0.696 ms
508 bytes from 192.168.1.1: icmp_seq=4 ttl=64 time=0.707 ms
508 bytes from 192.168.1.1: icmp_seq=5 ttl=64 time=0.705 ms
508 bytes from 192.168.1.1: icmp_seq=6 ttl=64 time=0.719 ms
508 bytes from 192.168.1.1: icmp_seq=7 ttl=64 time=0.711 ms
508 bytes from 192.168.1.1: icmp_seq=8 ttl=64 time=0.712 ms
508 bytes from 192.168.1.1: icmp_seq=9 ttl=64 time=0.711 ms
508 bytes from 192.168.1.1: icmp_seq=10 ttl=64 time=0.699 ms

--- 192.168.1.1 ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 7ms
rtt min/avg/max/mdev = 0.689/0.712/0.771/0.021 ms, ipg/ewma 0.813/0.726 ms

Figure 9: Example of running a manual networking test to verify correct operation of

the underlying SMSC9512 driver. The ping command, which is shown on the first

line and was run on a separate computer running Linux, sent a number of ICMP Echo

Request packets to the Raspberry Pi running Embedded Xinu. The -i 0 option instructed

ping to send the packets with no delay (i.e. as fast as possible), in order to increase

the chance of detecting networking problems. As shown by the statistics summary,

all packets were successfully returned (as ICMP Echo Replies) very quickly. This

demonstrated Embedded Xinu’s SMSC9512 driver both receiving and sending packets.

Note: actual tests were done with higher packet counts to further increase the chance of

detecting any problems.

format in which the Ethernet frames are embedded in the USB data is device-specific

and had to be determined by examining the Linux implementation.

When the network subsystem calls etherWrite() to request that an Ethernet

frame be sent out on the network, the SMSC9512 driver sends the data to the SMSC9512

using a bulk OUT USB transfer. Like incoming packets, outgoing packets must be

embedded in the USB data in a device-specific format that had to be determined by

examining the Linux implementation.

6.2.3 Testing
I primarily tested the SMSC9512 driver manually by performing stress-tests with

sending and receiving packets. I connected the Raspberry Pi (running Embedded Xinu)

to another computer (running Linux) using an Ethernet cable, then configured static

IP addresses and routing information on both ends. I then used the ping command on

Linux to send repeated ICMP Echo Request packets to the Raspberry Pi using various

packet sizes and repeat rates. The expected behavior was that Embedded Xinu promptly

respond to each packet with an ICMP Echo Reply packet. ping reported statistics
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dealing with packet loss, packet corruption, and latency, and I checked these statistics

for possible issues. In the latest version of the driver, there are no known issues.4 Figure

9 shows an example of one such test. In addition, the SMSC9512 driver received more

testing when I tested additional networking features, such as the DHCP (Section 8.3)

and TFTP (Section 8.4) clients.

I also tested the SMSC9512 driver automatically using an Ethernet driver test

program that is included in Embedded Xinu’s test suite. This test relies on placing the

Ethernet device in loopback mode, which is a hardware mode that causes transmitted

packets to “loop back” to the receiver. Specifically, the test program uses this mode

to send packets to itself through the network adapter without relying on an external

computer. Although the Linux driver[33] never places the SMSC9512 in loopback

mode, it defines, with no explanation, a value MAC CR LOOPBK . I found, empirically,

that the device enters loopback mode when software writes this value to the MAC

Control Register. This made it possible to run the automated test, which succeeds in the

latest version of the driver.

6.2.4 Limitations
Since Embedded Xinu is an instructional operating system, and for the sake of time,

I did not implement software support for all features supported by the SMSC9512

hardware. Some extra features which the Linux driver supports but my Embedded Xinu

driver does not include:

• Support for other potentially compatible SMSC LAN95xx devices

• Dynamically detaching the device5

• Reading from attached EEPROM5

• VLANs

• TCP/IP checksum offload

• Various PHY (physical layer) features, such as support for Wake-on-LAN and

suspend

4 This section is not meant to convey the entire development process of the SMSC9512 driver and

the underlying USB subsystem. In particular, I spent a long time fixing a bug in the underlying USB

subsystem that showed up when testing the SMSC9512 driver.
5Not possible on the Raspberry Pi.
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Chapter 7

Design & Implementation of USB
Keyboard Driver

7.1 Background

With a USB subsystem for Embedded Xinu in place (see Chapter 5), it became possible

to implement support for useful USB devices. One very common and useful type

of USB device is a USB keyboard. Although Embedded Xinu primarily relies on

simple serial ports (see Section 4.6) for human interaction, the USB support available

on the Raspberry Pi as well as the graphics support (see Section 9.2) made possible

a keyboard-and-monitor setup as an alternate way for humans to interact with the

Embedded Xinu operating system. This section describes the implementation of a

driver for USB keyboards for the input half of this setup.

Initially, Tyler Much was responsible for writing the USB keyboard driver, but

little progress was made for various reasons, such as the unexpectedly high difficulty

of the task. As we discovered, USB keyboards are normally supported through the

USB HID (Human Interface Device) specification [59], which provides a USB device

class intended to represent arbitrary input devices including not only keyboards, but

also mice, trackballs, joysticks, knobs, VCR remote controls, data gloves, steering

wheels, and thermometers. The above device types do not have specific input data

protocols defined, but rather each HID device may speak its own protocol, as specified

in a declarative format in a structure called the device descriptor that the HID device

must provide when queried. Consequently, HID devices are intended to all be supported

by a single HID driver in combination with a sophisticated input subsystem that can

handle all these different types of devices. The HID driver must be able to parse and

understand arbitrary HID descriptors which necessarily requires many thousands of

lines of code.1

1The Linux HID driver (which is actually split into multiple parts) contains upwards of 4000 lines of

code (not even counting headers and device-specific quirks), and the Linux input subsystem contains

thousands more.
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Tyler had written some initial code to parse HID descriptors (with the help of some

code I had provided for actually communicating with the USB keyboard using the USB

subsystem), but when I returned to the code later to actually get the driver working, I

decided to take a simpler approach. Since the designers of the USB HID specification

knew that it would be very complicated to get a simple keyboard working, they actually

had defined an alternative protocol to receive data from USB keyboards. This alternate

protocol is defined in the USB HID specification itself and is referred to as the boot
protocol. As documented in Section 7.2 of the USB HID specification [59], software

can enable the boot protocol on a USB keyboard by sending a specific request to the

keyboard’s default control endpoint. Although it is seemingly not required that all

“USB keyboards” support the boot protocol, it seems to be widely implemented due to

its use in the BIOSes of desktop and laptop PCs.

Following enabling of the boot protocol, software can read the report, or packet of

input data, from the keyboard by performing an interrupt transfer from its interrupt IN

endpoint. The hardware completes this transfer when a key on the keyboard has been

pressed or released, or after a certain amount of time has elapsed. The resulting report

data contains information about keys currently pressed. Specifically, modifier keys such

as Shift and Control are represented as a bitmask, and other keys are represented as

HID Usage IDs which can interpreted with the help of the USB HID Usage Tables

specification [60].

7.2 Driver
The working Embedded Xinu USB keyboard driver is located in device/usbkbd/.

Like other Embedded Xinu device drivers such as the various UART drivers, the

USB keyboard driver provides one or more device table entries, such as USBKBD0,

USBKBD1, etc. Applications can read characters from these devices using the regular

getc() or read() system calls. Internally, the implementations of these functions

make use of a buffer that is written to by usbKbdInterrupt() when key-presses

are detected. Since the USB keyboard driver provides data as 8-bit characters, it has

limited support for special keys that do not correspond to printing characters (e.g. F1,

Page Up, . . .). Currently, the driver simply ignores most of these special keys. Note that

these limitations are due to the Embedded Xinu device model rather than the keyboard

boot protocol or even the USB keyboard driver per se — that is, the driver does receive

information about presses of keys like “Page Up”, but it has no way to report it to

applications.

Since USB is a dynamic bus, there is no guarantee that all supported USB keyboard

devices are attached at all times. I handle this in the driver by dynamically binding

and unbinding USB devices from static USBKBD devices. The first USB keyboard

plugged in becomes USBKBD0, the second (while the first is still plugged in) becomes

USBKBD1, etc. Furthermore, attempts to read from a USB keyboard device that does

not currently have a physical keyboard bound to it simply block rather than returning
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an error code. This means that an application that attempts to get input from a USB

keyboard that is not actually plugged in will simply be put to sleep (by waiting on a

semaphore) until a keyboard is, in fact, plugged in.

The sysinit() function, which contains initialization logic common to all Em-

bedded Xinu platforms, calls init() on each device table entry. This results in a call

to usbKbdInit() for each USB keyboard device entry. On the first such call, the

USB keyboard driver registers itself with the USB subsystem as a USB device driver.

usbKbdInit() does not wait for a keyboard to actually be attached before returning.

When the user attaches a USB device or when an internal USB device is first

detected, the USB subsystem calls usbKbdBindDevice(), which is one of the

callbacks that the USB keyboard driver provided when it registered itself with the USB

subsystem. If the new USB device has a HID interface supporting the keyboard boot

protocol (i.e. “is a USB keyboard”), the USB keyboard driver starts a recurring USB

transfer from the keyboard’s interrupt IN endpoint. When each such transfer completes

(due to a key being pressed or released, or a timeout elapsing), the USB subsystem exe-

cutes the driver-provided callback usbKbdInterrupt(), which parses the transfer

data and buffers any new characters for later retrieval by reads from the USB keyboard

device.

Since the USB keyboard driver depends on a physical keyboard, it was not practical

to implement automated tests for it. Therefore, I primarily tested it by configuring a

shell that reads its input from USBKBD0, then plugging in a keyboard and typing on it.

I verified I had entered the keymap correctly by typing every possible key, both with

and without Shift pressed.2 Slightly later, I modified Embedded Xinu’s default main()
function to start up a shell using a USB keyboard and monitor when both devices are

included in the build. This means that a user can, by default, interact with XinuPi using

either a keyboard-and-monitor setup or a bidirectional serial port.

2This simple test is not meant to convey the entire development process. For example, even before

I started writing the USB keyboard driver, I tested communicating with several USB keyboards using

standard USB messages in order to verify that the USB subsystem itself could communicate with Low

Speed devices.
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Chapter 8

Design & Implementation of Network
Bootloader

8.1 Motivation

Previous ports of Embedded Xinu have been used in laboratory environments where

students can run experimental kernels on real back-end hardware [17] [18]. This

functionality relied on the ability of the firmware to perform network booting — that is,

loading the operating system kernel from over the network. This feature was supported

in the CFE (Common Firmware Environment) present on the Asus and Linksys wireless

routers to which Embedded Xinu had been ported. In addition, the CFE provided an

interactive shell through which commands could be issued, for example to load and

execute a kernel from over the network.

However, network booting support is not known to be available in the firmware of

the Raspberry Pi. The Raspberry Pi firmware, which is provided by Broadcom and

executes on the VideoCore co-processor (see Section 3.2.2), automatically boots the

ARM processor using a file kernel.img located in a FAT (File Allocation Table)

filesystem on the memory card. There is no known way to specify an alternate boot

location, and the firmware is not known to even have the USB support that would be a

prerequisite to operating the SMSC LAN9512 network device on the Raspberry Pi.

But regardless of the firmware support, it is still possible to write software that

runs on the ARM processor and boots the Raspberry Pi over the network. This chapter

describes how I implemented this support in XinuPi so that XinuPi can serve as a

bootloader for itself. Note that this network booting support depends on the networking

support I implemented (see Chapter 6) and therefore provides another motivation for

that aspect of porting Embedded Xinu to the Raspberry Pi.
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8.2 Overview
At a high level, network booting can be divided into three main steps. The first step

is to configure a network interface with Internet-layer protocol information. This

typically means assigning an IPv4 (Internet Protocol version 4) address, netmask, and

gateway. These values can be assigned either statically or dynamically. If dynamic

network configuration is desired, then the standard DHCP (Dynamic Host Configuration

Protocol) can be used. In common implementations of network booting, including those

used on most routers and personal computers, DHCP is the chosen method because it

avoids making assumptions about the specific network configuration and also includes

a way to pass information to the client about which server and filename to use for the

second step (downloading the new kernel).

The second step in network booting is to download a new kernel from a remote

host over the network. This theoretically can be accomplished using one of a number

of file-transfer protocols such as HTTP. Although supported by Embedded Xinu,

protocols such as HTTP that run over UDP and TCP are too complex to have been

widely implemented in firmware. Instead, a simplified file transfer protocol called

TFTP (Trivial File Transfer Protocol) is usually used instead.

The third and final step in network booting is to irreversibly pass control from the

currently executing kernel (the bootloader) to the new kernel. The possible ways of

doing this depend on the specific hardware.

In order to achieve high levels of flexibility, standardization, and protocol simplicity,

I implemented the network bootloader using the DHCP and TFTP protocols. Neither of

these protocols was supported in the development version of Embedded Xinu. Although

both DHCP and TFTP have been supported by past versions, I ended up having to

rewrite the code to ensure high-quality implementations with the needed features. In

addition, I implemented a procedure called kexec() that transfers control to a new

kernel on the Raspberry Pi. (kexec is short for kernel execute and is the term used by

the Linux kernel for its equivalent feature.)

8.3 DHCP client
DHCP (“Dynamic Host Configuration Protocol”) is a protocol for IPv4 autoconfigura-

tion that is widely used on the Internet and in local area networks. DHCP is an open

standard specified in RFC 2131 [26].

DHCP is a client-server protocol concerned with two types of actors:

• DHCP clients, which are hosts attempting to obtain an IPv4 networking configu-

ration.

• DHCP servers, which keep track of the state of one or more subnets and assign

IPv4 networking configurations to clients.
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A typical DHCP session proceeds as follows:

1. A DHCP client broadcasts a DHCPDISCOVER message on the network to an-

nounce its interest in joining an IPv4 network. The DHCPDISCOVER is sent to

the hardware broadcast address because no Internet-layer information is available.

2. The DHCP server responds with a DHCPOFFER message to offer an IPv4 net-

working configuration to the DHCP client. The offered IPv4 networking configu-

ration must include an IPv4 address that is not currently known to be in use on

the network.

3. The DHCP client sends a DHCPREQUEST message to accept an offer from a

DHCP server.

4. The DHCP server responds with DHCPACK to confirm to the client that it has

committed the reservation of the IPv4 networking configuration being assigned

to the client.

The above is a simplified description and does not cover certain aspects, such as

DHCP forwarding and rebinding DHCP leases. A full state diagram for DHCP as well

as the formats of the protocol messages can be found in RFC 2131 [26]. Since DHCP

is a widely deployed, well-documented protocol, there is little reason to document it in

full in this thesis.

Although a DHCP client was available for a prior version of Embedded Xinu, it

contained various problems and flaws, including:

• The old DHCP client was not source-compatible with the current version of

Embedded Xinu, primarily due to changes in the network subsystem that occurred

before I started working with the code.

• The old DHCP client did not re-send DHCPDISCOVER packets if no DHCPOFFER
was received in a certain amount of time. In other words, it was not sufficiently

tolerant of networking problems such as packet loss.

• Although the old DHCP client provided access to the IP address, netmask, and

gateway assigned by the DHCP server, it did not provide access to the bootfile

name and TFTP server IP address. The latter two pieces of information are used

specifically in network booting and therefore needed to be supported in order to

implement a network bootloader.

• The old DHCP client duplicated code among the different DHCP request and

reply handlers, thereby making it more difficult to fix other problems. Since all

DHCP messages share the same basic format, it makes more sense to share parts

of the code.
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xsh$ netup ETH0
Trying DHCP on ETH0...
ETH0 is 192.168.1.72 with netmask 255.255.255.0 (gateway 192.168.1.1)

Figure 10: An example of using the Xinu shell to bring up a network interface using

DHCP autoconfiguration. This only works if there is a DHCP server (not included with

Embedded Xinu) running on a separate host on the network.

Consequently, I rewrote the DHCP client and added it to the current version of

Embedded Xinu. It is now located in the network/dhcpc directory and is divided

into the following functions, each of which is located in the same-named source file:

• dhcpClient(), which is the external interface to the DHCP client. As input, it

requires the device descriptor for the network device on which to open the DHCP

client (such as ETH0) and the number of seconds to attempt DHCP before timing

out. As output, it produces the assigned IPv4 address, netmask, and gateway,

as well as the bootfile name and IPv4 address of the “next” (TFTP) server if

provided by the DHCP server.

• dhcpSendRequest(), which is used internally by dhcpClient() to send

DHCPDISCOVER and DHCPREQUEST messages.

• dhcpRecvReply(), which is used internally by dhcpClient() to wait for

an appropriate reply from a DHCP server.

Between requests and replies, the DHCP client stores its state in an instance of

struct dhcpData. The code in the top-level dhcpClient() function resembles

a state machine, as per the design of DHCP described in RFC 2131 [26].

In a network booting setup, the administrator of the DHCP server must configure

the DHCP server to tell DHCP clients where to download the boot file (the new kernel).

This information consists of the file (bootfile) and siaddr (next-server IPv4 address)

fields that DHCP offers and acknowledgments contain. This information is returned

by dhcpClient() if it was provided by the DHCP server. Consequently, it becomes

available for the network bootloader to use in the next part of network bootloading,

which uses TFTP to download the specified boot file from the specified server.

Although used as part of the standard network booting process, DHCP is designed

for general IPv4 network autoconfiguration and is widely used for this purpose. Because

of this, it was also pertinent to use dhcpClient() to implement DHCP support in

the netup shell command. Example usage of this feature is shown in Figure 10.

Since Embedded Xinu’s test suite is standalone and I did not implement a DHCP

server for Embedded Xinu, it was not realistic to implement automated tests of the

DHCP client. However, I tested the DHCP client manually by running the netup
command as shown in Figure 10. To do this, I started the standard dnsmasq DHCP

62



server on another computer (running a Linux-based operating system), connected the

Raspberry Pi (running Embedded Xinu) via Ethernet, and ran netup from the Embedded

Xinu shell. This resulted in a successful DHCP transaction, and dnsmasq did not report

any errors or warnings. I also tested that the DHCP client correctly timed out when

no DHCP server responded. Furthermore, I tested that the DHCP client still worked

correctly with its source code modified to drop random packets.

8.4 TFTP client
TFTP (“Trivial File Transfer Protocol”) is a simple protocol for downloading and

uploading files. It is an open protocol specified in RFC 1350 [47], although several

extensions have been implemented [36][35][37]. TFTP is intended to be implemented

over UDP and is designed to be small and easy to implement. A TFTP transfer begins

with a request from a TFTP client to a TFTP server to read or write a file, which

in typical implementations also serves to open a UDP connection. Following the

establishment of a connection, the file data is transmitted over the connection in fixed-

size blocks of 512 bytes. Each block is acknowledged by the receiving end, which

provides some degree of resiliency against packet loss without incurring the complexity

of running the protocol over TCP.

Although a TFTP client was available for a prior version of Embedded Xinu, it

was not being source-compatible with the current version and the code quality seemed

low. Consequently, I ended up implementing a new TFTP client from scratch. The

resulting client is located in network/tftp/ and can be programatically invoked

using tftpGetIntoBuffer() or the more general tftpGet(). Both functions

take in the name of the file to download and the network address of the server from

which to download it. tftpGetIntoBuffer() stores the full downloaded file data

into a dynamically allocated buffer, whereas tftpGet() provides the downloaded

file data block-by-block to a caller-provided callback function. The client is robust to

dropped packets. It conforms to RFC 1350 [47] but does not support any extensions of

the base TFTP protocol defined in other RFCs [36][35][37].

TFTP is used in the standard networking booting process and is widely implemented

by boot clients, which merits its discussion here. In addition, TFTP is very simple

and would be easier to use as a basis for educational activities or assignments than

other file transfer protocols such as FTP or HTTP, which further merits its inclusion

in Embedded Xinu. However, since the current version of Embedded Xinu does not

support a filesystem, other uses of the TFTP client are currently limited.

Since Embedded Xinu’s test suite is standalone and I did not implement a TFTP

server for Embedded Xinu, it was not realistic to implement automated tests of the

TFTP client. However, after writing the client, I reviewed all the code for compliance

with the TFTP specification [47]. Then, I tested the TFTP client manually by starting a

standard TFTP server on another computer (running a Linux-based operating system),

connecting the Raspberry Pi (running Embedded Xinu) via Ethernet, configuring the
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network interfaces on each end, and downloading files to the Raspberry Pi via TFTP

using a custom Embedded Xinu shell command. I tested that the client performed

correctly when the specified file was found, when the specified file was not found, when

the server did not respond, and with its source code modified to drop random packets. In

addition, the TFTP client received further testing when I tested the integrated bootloader

described in Section 8.6.

8.5 kexec: executing a new kernel in software
Once the bootloader has prepared the new kernel in memory, the final step is to transfer

control to it. This task is routinely performed by special-purpose bootloaders, but

it can also be implemented in more general-purpose operating systems. Linux, for

example, supports a kexec load() system call to load a new kernel, specified as

one or more segments, into kernel memory. The loaded kernel can then be executed

using the reboot() system call with a special flag, or executed automatically when a

system crash occurs.

However, for the purpose of implementing a bootloader in Embedded Xinu primarily

for the Raspberry Pi, a general interface like Linux’s is not currently necessary. Instead,

I added a kexec() function that simply takes in a single buffer of memory containing

the new kernel and passes control to it:

syscall kexec(const void * kernel, uint size);

The actual implementation of kexec() for the Raspberry Pi port is more compli-

cated than simply redirecting control flow to the memory address kernel (e.g. calling

it as a function with no parameters). Since the firmware that boots off the memory card

loads the first kernel at memory address 0x8000, for consistency the kernel passed

to kexec() is expected to also be linked to run at memory address 0x8000. But

since 0x8000 is already the memory address at which the currently executing kernel is

loaded, kexec() must overwrite the current kernel with the new kernel. The trickiest

part is doing this in such a way that the memory containing the instructions being

executed to perform the copy is not itself overwritten.

The solution I came up with to correctly implement the kexec() semantics was

to condense the code to copy the new kernel to memory address 0x8000 into a

relocatable ARM machine code stub of fixed size (6 instructions long, to be precise).

The disassembly of this stub is shown in Figure 11.

The stub takes as input the pointer to the new kernel in register r0 and the number of

32-bit words in the new kernel image in register r1. For convenience, these correspond

to the first two arguments to a procedure conforming to the ARM Procedure Call

Standard[12]. However, unlike a normal procedure, the stub does not return when it has

completed, but rather jumps directly to memory address 0x8000 to pass control to the

new kernel. To prevent the stub from overwriting itself, kexec() copies it to memory

address 0x7fe8 (just before the destination of the copy) before passing control to it.
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0: e3a04902 mov r4, #32768
4: e4903004 ldr r3, [r0], #4
8: e4843004 str r3, [r4], #4
c: e2511001 subs r1, r1, #1
10: 1afffffb bne 4
14: e3a0f902 mov pc, #32768

Figure 11: Machine code stub used in kexec() implementation for XinuPi.

xsh$ kexec -n ETH0
Running DHCP on ETH0
Bringing up ETH0 as 192.168.1.54 with mask 255.255.255.0 (gateway 192.168.1.1)
Downloading bootfile "xinu.boot" from TFTP server 192.168.1.1
Executing new kernel (size=208832)
(Embedded Xinu) (arm-rpi) #9 (e@zzz) Sat Nov 23 20:25:29 CST 2013

...

Welcome to the wonderful world of Xinu!
xsh$

Figure 12: A demonstrating of the kexec -n ETH0 shell command, which performs

a network boot. This relies on DHCP and TFTP services configured on a separate

computer on the network; see Figure 13 for details. The XinuPi Logo is omitted for

space.

The kexec() implementation discussed here can be found in

system/platforms/arm-rpi/kexec.c. I tested it by observing that it worked

correctly when used in the integrated bootloader described in the next subsection.

8.6 Integrated bootloader
With an Ethernet driver, DHCP client, TFTP client, and kexec() function imple-

mented, all the functionality needed for network booting is now available in Embedded

Xinu. As a proof-of-concept demonstration of network booting, I implemented a kexec
shell command that accepts the -n NETDEV option to perform a network boot over the

specified network device, such as ETH0. An example of using this command is shown

in Figure 12.

Although I implemented the proof-of-concept network bootloader as an interactive

shell command, the operating system main() routine could be adjusted to run the same

code automatically immediately after the operating system boots. This would result in

a specialized image of Embedded Xinu that acts as an automated network bootloader.
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$ ifconfig eth0 192.168.1.1/24 up
$ dnsmasq --interface=eth0 \

--dhcp-range=192.168.1.2,192.168.1.254,255.255.255.0 \
--dhcp-boot=xinu.boot \
--enable-tftp \
--tftp-root=/var/tftpboot

$ cp xinu.boot /var/tftpboot/xinu.boot

Figure 13: Example Linux/UNIX shell commands run on a separate computer connected

via Ethernet to the Raspberry Pi in order to provide the network booting services

necessary to reproduce the successful network boot shown in Figure 12. The ifconfig
command sets a static network configuration. The dnsmasq command starts the DHCP

and TFTP services. Its --dhcp-boot option specifies the filename to advertise to

DHCP clients as the boot file to download using TFTP. The last command makes a

XinuPi kernel available in the directory whose contents are made available via TFTP.

These are example commands only, and other software can provide these same services.

Most of this new functionality is actually not dependent on the Raspberry Pi platform.

However, for the Raspberry Pi, the firmware would start up the network bootloader

stored on the memory card. The bootloader would then automatically download a

different kernel from a server on the network and boot into it. This functionality is ideal

for a laboratory environment like that used for previous ports of Embedded Xinu [17]

[18]. If an equivalent lab with Raspberry Pis were to be deployed, then students would

be able to remotely test bare-metal code, including Embedded Xinu kernels, on real

Raspberry Pi backends without having to deal with the inconveniences of physically

using the hardware, such as repeatedly copying the kernel to the memory card.
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Chapter 9

Other Work

This section summarizes significant “other” work (i.e. work not primarily done by

myself) towards porting Embedded Xinu to the Raspberry Pi or applying Embedded

Xinu on the Raspberry Pi (“XinuPi”) to education. It does not discuss other instructional

operating systems in general, which is left for the last chapter.

9.1 Audio support

The Raspberry Pi cannot generate sound itself, but it can output a sound signal through

the HDMI port, the GPIO pins, or the 3.5mm TRS connector. Currently, Embedded

Xinu does not support sound on any platform, and it is arguably not an important feature

to add. However, as an experimental project, Tyler Much attempted to figure out how

to control the Raspberry Pi audio outputs from XinuPi. This section summarizes the

results of his work.

Software running on the Raspberry Pi may send PCM1 sound data over the GPIO

pins by interfacing with the memory-mapped PCM module available on the BCM2835.

Three separate signals may be controlled by software: the Bit Clock (PCM CLK, GPIO

pin 18, alternate function 0), Frame Sync (PCM FS, GPIO pin 29, alternate function

2), and Serial Data Output (PCM DOUT, GPIO pin 31, alternate function 2). Broadcom

provides documentation for the PCM module [16]; however, the documentation does

not specify certain key information, which had to be determined through empirical

testing and finding alternate sources of information. More details can be found our

WESE paper [14].

The code to interface with the BCM2835 PCM module is experimental and has not

yet been added to the master branch of the Embedded Xinu repository.

1PCM stands for pulse-code modulation and is the standard form for digital audio in computers.
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9.2 Graphics support
The Raspberry Pi does not, of course, include a graphical display itself, but it can

output video through either RCA video or HDMI. In fact, the onboard VideoCore GPU,

discussed in Section 3.2.2, is quite powerful and can be used for hardware-accelerated

2D or 3D graphics. Typical users of the Raspberry Pi running Linux attach a monitor

and use it as the primary output device for human interaction. Although XinuPi is

intended to be an embedded operating system and already has two other ways for

humans to receive output from the operating system (serial port (Section 4.6) and

Ethernet (Chapter 6)), basic graphics support is a very attractive feature to have that

expands the potential user-base of Embedded Xinu, especially when combined with the

support for USB keyboards (Chapter 7). Basic graphics support also demonstrates a

feature that uses the VideoCore, which as discussed in Section 3.2.2 is an important

part of the Raspberry Pi.

Graphics support for XinuPi was implemented by Farzeen Harunani. This section

summarizes the results of her work.

Although the VideoCore supports APIs for hardware acceleration, for XinuPi we

only desired basic graphics support using a framebuffer. A framebuffer is simply a

region of memory containing pixel data which is periodically mirrored to the video

display. After setting up a framebuffer, software can add or change graphics on the

screen simply by changing the values of bytes in the framebuffer that represent pixels.

The basic idea of a framebuffer is standard and is not specific to the BCM2835.

As mentioned in Section 3.2.2, the VideoCore is not well documented (publicly,

at least), and this unfortunately extends to even the basic framebuffer support. To

implement a framebuffer driver for XinuPi, Farzeen had to use various sources of

information such as the C source code of a driver Broadcom provided for Linux and

various forum postings and wiki pages.

To set up a framebuffer on the BCM2835, software running on the ARM must

communicate with the VideoCore using a “mailbox system” that exists in hardware.2

Like other devices on the BCM2835, the interface to the mailbox system is a set

of memory-mapped registers located in the peripheral address range. Bidirectional

messages sent through the mailbox system are limited to 28 bits. However, this

is enough to store a 16-byte-aligned pointer to additional data.3 This capability is

used in the message to set up a framebuffer, which uses a structure to declare to the

VideoCore the parameters needed for the framebuffer, such as the width and height of

the physical display and the desired pixel depth. Following a successful framebuffer

request by software running on the ARM, the VideoCore sends the address of the

resulting framebuffer through the mailbox system.4

2The mailbox system has other uses as well; for example, it can be used for power management. In

fact, it is needed to turn on the USB controller.
3 As a “co-processor”, the VideoCore can access the same memory that the ARM can.
4No cooperation from the dynamic memory allocator of the operating system running on the ARM is

needed to allocate the framebuffer, since the VideoCore has a region of memory reserved for its use at
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Following setup of the framebuffer, software running on the ARM can modify

pixels on the screen simply by changing the values in the framebuffer memory. Farzeen

built on this capability to implement text output using a hard-coded font, and on top

of that a framebuffer device that conforms to the Xinu device model — that is, writes

of character data to the device cause text to appear on the screen. Furthermore, she

implemented functions to draw basic graphical shapes, and on top of that implemented

an interactive turtle graphics program.

Although the turtle graphics program is interesting, from my point of view the

framebuffer device is a much more useful feature, especially when paired with the USB

keyboard support described in Chapter 7. More information about the graphics/frame-

buffer support for XinuPi can be found in our WESE paper [14] as well as in the source

code itself. As of this writing, all the relevant code is included in the master branch of

Embedded Xinu in the directory device/framebuffer rpi/.

9.3 Classroom trials
Tyler was planning to work with Dr. Dennis Brylow to set up a Raspberry Pi laboratory

environment at Marquette University for use in the operating systems course during

the spring of 2014. The setup would be similar to previous laboratory environments

used for Embedded Xinu [17][18] but would rely on low-cost, easy-to-setup Raspberry

Pi hardware rather than Linksys routers requiring hardware modifications. If this

laboratory environment is ever built, it would likely rely on the network bootloader that

I implemented (described in Chapter 8). However, as of this writing I have heard no

news regarding this, and the operating systems course appears to be being taught by

another professor and is focusing on different topics.

Still, at least one other school has shown interest in the XinuPi work. A professor at

Indiana University had students developing Xinu remotely on 32 Raspberry Pis during

the fall of 2013. This used the XinuPi codebase discussed in this work as well as the

xinu-arm codebase[32]. The differences between the XinuPi codebase and the xinu-arm
codebase are discussed in the next section.

9.4 xinu-arm project
A project called xinu-arm overlaps somewhat with the XinuPi project. The xinu-arm

code is publicly available via Git at https://github.com/jetcom/xinu-arm
and is based on Embedded Xinu 2.01. It does not seem to be officially documented, but

according to the version control logs, the project was started by several students at the

Rochester Institute of Technology and has had several other contributors. Although the

repository on Github is described as “Xinu arm port, for Raspberry Pi”, the README

file states a different goal: to “port Xinu to the ARM Versatile baseboard” (not the

boot time and can provide a buffer in this space to the ARM.
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Raspberry Pi). Also, the Raspberry Pi code (platform raspberry-pi) is located in a

separate branch of the repository, not in the default “master” branch, the latter of which

contains two ARM platforms: arm-qemu and fluke-arm. Consequently, the xinu-arm

project is perhaps best described as “an attempt to port Embedded Xinu to several ARM

platforms, including the Raspberry Pi”.

xinu-arm’s Raspberry Pi support overlaps with the equivalent in our codebase

(“XinuPi”) primarily in the low-level details that I have categorized as part of the “core

operating system” and covered in Chapter 4. This core functionality, such as preemptive

multitasking and interrupt handling, is broadly equivalent between the two projects,

although there are some differences. As an example, in Section 4.4, I noted that the

threads implementation in xinu-arm’s ARM platforms contained two specific bugs and

had other issues; consequently, I wrote a new implementation of that functionality. I

also identified logical errors in the organization of the xinu-arm code that make it less

well-suited for educational use. For example, on the Raspberry Pi platform, xinu-arm

implements enable() and disable() in a file named vic.h. Although vic
stands for “Vectored Interrupt Controller”, the Raspberry Pi does not, in fact, have a

“Vectored Interrupt Controller”, nor do enable() and disable() actually use the

interrupt controller at all (see Section 4.2.1 versus Section 4.2.2).

Still, in Section 4.6 I noted that the PL011 UART driver in our codebase is, in fact,

based on the one from xinu-arm, although that was in turn based on the NS16550 UART

driver already included in Embedded Xinu. Indeed, because of Embedded Xinu’s

BSD-style license there is no reason why code from either project cannot be used in the

other, unless one project starts releasing their changes under a different license.

Beyond the low-level details, the Raspberry Pi support in our codebase is much

more advanced than the Raspberry Pi support in xinu-arm. Our codebase now supports

USB and networking on the Raspberry Pi, and it is on these advanced features that I

have spent almost all my time. Similarly, Farzeen spent most of her time on the graphics

support, and Tyler spent most of his time on the audio and USB keyboard support. None

of these features are included in the xinu-arm codebase.

I have also made many improvements to Embedded Xinu outside of those dealing

strictly with the Raspberry Pi port, such as improving the documentation, fixing bugs

in platform-independent code, and deduplicating code. In my opinion, some of these

improvements have been more important than the Raspberry Pi work. For example,

I have fixed various bugs unacceptable in any operating system, including incorrect

implementations of trivial functions such as memchr() and a remotely-triggerable

denial of service vulnerability in the networking stack.

Before March 2014, the main advantage the xinu-arm codebase had over our

codebase was that only the xinu-arm codebase supported the arm-qemu virtual platform

— that is, the QEMU open-source emulator software [13] simulating an ARM processor,

specifically one located on an ARM Versatile Platform Baseboard. This platform may

be of interest to instructors looking for a convenient, “hardware-free” solution for

teaching operating systems using an ARM-based platform. QEMU also offers improved
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debugging capabilities compared to real hardware.5 Indeed, the absence of arm-qemu
support from our codebase was apparently the main reason why the professor at Indiana

University used the xinu-arm codebase in addition to ours.

However, in March 2014 I added arm-qemu support to our codebase. This was fairly

easy because I had already factored out the Raspberry Pi code that would be common

to all ARM platforms. Consequently, the main task I had to accomplish to achieve the

port was to write drivers for the PL190 interrupt controller and SP804 timer present on

the Versatile Platform Baseboard. Both devices are well documented by ARM Ltd. I

did not borrow code from the xinu-arm codebase for various reasons, such as unclear

code organization. Although I could discuss the arm-qemu work in more detail, it is not

the focus of this thesis.

5QEMU allows single-stepping the processor to trace exactly what is happening. Although the

Raspberry Pi can be debugged in a similar way using JTAG, it is difficult in part due to the explicit

software configuration required to expose the JTAG signals over the GPIO pins.
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Chapter 10

Conclusion and Related Work

This thesis has presented a port of the Embedded Xinu operating system to the Rasp-

berry Pi in a project called “XinuPi”. Embedded Xinu is an operating system targeted

at modern embedded systems. It supports important features such as preemptive multi-

tasking, interprocess communication, and networking, but it also has an instructional

focus and features a relatively simple design. Porting Embedded Xinu to the Raspberry

Pi has achieved two main goals. First, the project provides a convenient new platform

for Embedded Xinu. Second, the project demonstrates an operating system running

on the Raspberry Pi that is neither extremely complex nor extremely simple, thereby

bridging a gap in the types of system-level software that run on the Pi.

Embedded Xinu is far from the only instructional operating system available. An-

derson and Nguyen [9] surveyed instructional operating systems available as of 2005

that were suitable for use in undergraduate courses. Here I mention two they determined

to be the most commonly used at that time.

Nachos (Not Another Completely Heuristic Operating System), developed at the

University of California, Berkeley, can be provided to students as a skeleton to be

completed by teams of two in a 15-week semester. Nachos is implemented in C++ or

Java (depending on the version) and only runs on a simulator that emulates a MIPS

processor. This distinguishes it from Embedded Xinu, which is implemented in C and

runs on both simulators and real modern hardware.

The Minix operating system is a complete, fully-functional UNIX-like operating

system based on a microkernel architecture. It is well-designed and is perhaps best

known for influencing the early design of Linux. However, it includes about 30,000 lines

of code and may be too complex for some students. (Unfortunately, Embedded Xinu

currently has over 50,000 lines of code, but this counts all modules and all platform-

specific code; by disabling or removing platforms or modules it can be stripped down

fairly easily.)

Anderson and Nguyen also found that nearly half of institutions surveyed used no

instructional operating system at all, but rather taught operating system concepts by

having students use the UNIX API, write Java programs, use or study the Linux kernel

in some way, or do something else. Although learning about operating system features
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and writing programs that use them is very useful, this approach comes at the cost of

missing the hands-on, low-level programming experience the “Xinu approach” offers.

Furthermore, although the Linux kernel can make for a very good object of study, it is

so complex and production-focused that teaching it well is very difficult and is outside

the skills and knowledge of most instructors.

Slightly more recently, the xv6 operating system has been developed at MIT as

a re-implementation of Dennis Ritchie’s and Ken Thompson’s Unix Version 6 (v6)

[25]. Development started in 2006, about the same time Embedded Xinu development

started. Unlike Embedded Xinu, xv6 supports multiprocessing, has better support for

the x86 architecture, and supports a filesystem. A 2013 project has started porting it

to the Raspberry Pi [62]; however, at this point, Embedded Xinu is farther along in its

Raspberry Pi support.

Neither Embedded Xinu nor the Raspberry Pi have all the answers, but the combi-

nation of the two provides a framework for teaching operating systems at a time when

they are becoming increasingly complex. Embedded Xinu can be used as a stepping-

stone to understanding and working with full-blown, highly complex modern operating

systems such as Linux; and despite some flaws, the Raspberry Pi currently provides an

inexpensive and convenient platform for programming and computer science education,

including operating systems development.

Although future work could involve adding new features to Embedded Xinu, the

real strength of Embedded Xinu is its simplicity and understandability. Future work

might focus on optimizing these aspects of the operating system while still maintaining

relevance with new developments in the field.
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