Here’s a structured and professional answer to your questions about Tic-Tac-Toe test design: --- ## a) Equivalence Classes of Valid Input Equivalence class partitioning helps reduce the number of test cases by dividing input data into partitions of valid and invalid sets where the system behaves similarly. For Tic-Tac-Toe: ### Valid Input Equivalence Classes: | Equivalence Class | Description | | ----------------- | ------------------------------------------------------------------------------------- | | EC1 | Move by player X | | EC2 | Move by player O | | EC3 | Move to an empty cell | | EC4 | Move within grid boundaries (cells 1–9 or (0,0) to (2,2) depending on representation) | | EC5 | First move (game start) | | EC6 | Mid-game moves (game not yet won or drawn) | | EC7 | Winning move | | EC8 | Draw situation (last move, no winner) | --- ## b) Boundary Inputs Boundary Value Analysis identifies tests at the edges of valid or invalid input ranges. ### Boundary Inputs for Tic-Tac-Toe: | Boundary Case | Example | | ------------- | ----------------------------------------------------------------- | | B1 | Top-left corner cell (0,0) or cell 1 | | B2 | Bottom-right corner cell (2,2) or cell 9 | | B3 | Middle cell (1,1) | | B4 | First move (game state: empty board) | | B5 | Last move (game state: one cell left) | | B6 | Just before win condition (two same marks in row/column/diagonal) | | B7 | Immediate win move (completing three-in-a-row) | --- ## c) Robustness Tests (Invalid Inputs) Robustness testing covers invalid or unexpected inputs to ensure graceful handling. | Invalid Input | Example/Test | | ------------- | ---------------------------------------------------------- | | R1 | Move by the wrong player (e.g., O moves first) | | R2 | Move to an already occupied cell | | R3 | Move to a cell outside the grid (e.g., cell (3,3) or -1,0) | | R4 | Non-integer input (e.g., ‘A’, ‘#’, ‘1.5’) | | R5 | Null or empty input | | R6 | Move after the game has already been won | | R7 | Move after a draw (no more valid moves) | --- Here’s a structured analysis for your `binsrch` function, covering **Equivalence Classes**, **Boundary Inputs**, **Robustness Tests**, and **Line Coverage Tests**: --- ## a) **Equivalence Classes of Valid Input** | **Equivalence Class** | **Description** | **Example** | | --------------------- | --------------------------------------------------- | ------------------------------------------- | | EC1 | Key exists in the array | `a = [1,3,5,7], key = 5` ⇒ index 2 | | EC2 | Key does not exist and is smaller than all elements | `a = [2,4,6,8], key = 1` ⇒ return negative | | EC3 | Key does not exist and is larger than all elements | `a = [2,4,6,8], key = 10` ⇒ return negative | | EC4 | Key does not exist but is between existing elements | `a = [2,4,6,8], key = 5` ⇒ return negative | | EC5 | Empty array | `a = [], key = any` ⇒ return -1 | ✅ **Key considerations:** * The array `a` is assumed to be sorted. * All valid arrays and keys should result in correct index or negative insertion point. --- ## b) **Boundary Inputs** | **Boundary Case** | **Description** | **Example** | | ----------------- | ----------------------------------- | ---------------------------------- | | B1 | Key is the first element | `a = [2,4,6,8], key = 2` ⇒ index 0 | | B2 | Key is the last element | `a = [2,4,6,8], key = 8` ⇒ index 3 | | B3 | Key is middle element | `a = [2,4,6,8], key = 4` ⇒ index 1 | | B4 | Array of size 1, key matches | `a = [5], key = 5` ⇒ index 0 | | B5 | Array of size 1, key does not match | `a = [5], key = 3` ⇒ return -1 | | B6 | Array is empty | `a = [], key = 3` ⇒ return -1 | --- ## c) **Robustness Tests (Invalid Inputs)** | **Invalid Input Case** | **Description** | **Expected Behavior** | | ---------------------- | ---------------------------- | ---------------------------------------------------------------------------------------------- | | R1 | Null array | `a = null` ⇒ **Exception** (`NullPointerException`) | | R2 | Unsorted array | `a = [3,2,5], key=2` ⇒ **Incorrect result** (function assumes sorted input) | | R3 | Key is outside integer range | (Technically impossible in Java `int`, but if dealing with other types or different languages) | | R4 | Very large array | Test for performance, not correctness | ✅ **Note:** This implementation **does not check for sorted input**—a potential design flaw if inputs are uncontrolled. --- ## d) **Tests for Line Coverage** To cover **every line** of the code at least once: | **Test Case** | **Array (a)** | **Key** | **Expected Result** | **Lines Covered** | | ------------- | ------------- | ------- | ------------------- | ------------------------------------------------------ | | T1 | `[2,4,6,8]` | `6` | `2` | Normal mid found (`return mid;`) | | T2 | `[2,4,6,8]` | `1` | `-1` | `low > high` case | | T3 | `[2,4,6,8]` | `10` | `-5` | `low > high` case | | T4 | `[2,4,6,8]` | `5` | `-3` | Adjust both `low` and `high` without finding key | | T5 | `[]` | `3` | `-1` | Empty array: `low=0`, `high=-1` ⇒ immediate `low>high` | ✅ These five tests guarantee: * `low > high` condition * Both `low = mid + 1` and `high = mid - 1` branches * Successful `return mid` path * Empty array handling ---