Embedded Systems
Spring, 2018
FINAL EXAM
(not real!)

|

last name
first name
Notes:
 This is an “1 page sheet” open-notes exam
 Be sure to write legibly and clearly mark your answers
 Show your work for partial credit
 Total = 100 points
Question 1. Complete the following glossary of terminology encountered in this course. Write a single phrase/sentence rather than detailed explanations. (1 point each)
	ALU
	Arithmetic Logic Unit
	

	UART
	
	

	PWM
	
	

	VLIW
	
	

	Mutex
	
	

	RTOS
	
	

	FIFO
	
	

	ARM
	
	

	RTC
	
	

	SOC
	
	

	IIC
	
	

Question 2. (5 points) Explain what is the difference between synchronous and asynchronous serial communication. Address the issue of which transfer is inherently faster.
One of the major differences is that in Synchronous Transmission, the sender and receiver should have synchronized clocks before data transmission. Whereas Asynchronous Transmission does not require a clock but it adds a parity bit to the data before transmission.
[image: image2.jpg]Direction Of Flow

[image: image3.jpg]

FYI: In the table below, fill in “asynchronous” or “synchronous” as
appropriate.
	
	Type of Communication

	RS232
	Asynchronous

	SPI
	Synchronous

	I2C
	Synchronous

Question 3. (5 points) Consider the serial (RS232) communication routine below, which uses the microcontroller’s USART hardware and polling to transmit a NULL-terminated string. The routine works reliably in an engineer’s embedded application, until she turns on interrupts to service the INT0 interrupt. Explain what is going on, and provide a solution.
void usart_print(const char *ptr){
// Send NULL-terminated data from SRAM.
// Uses polling (and it blocks). while(*ptr) {
while (!(UCSR0A & (1<<UDRE0)))
;
UDR0 = *(ptr++);
}
}
Answer: The statement: UDR0 = *(ptr++); is causing the problem. While this is a single C statement, it will compile to 10 or more assembly language statements. If the INT0 (or any interrupt) fires during the sequence, then the bit timing of the characters that the USART is generating, may be compromised ,which could confuse the serial receiver. The other C statements will also compile to several assembly language statements, but delays here are not problematic. A solution is to bracket the statement with cli and sei instructions:
:
cli();
// Disable off interrupts
UDR0 = *(ptr++);
sei();
// Enable interrupts
:
Question 4. (5 points) An embedded systems programmer finds that the following ISR is extremely slow. Explain in 3–5 sentences what the cause is.
my_isr()
{
*/
}
Answer:

save_registers();
disable_interrupts();
y = getADC(1);
/* measure voltage on ADC channel 1 */
printf(“%3d”,y);
/* send value to PC over serial link
enable_interrupts();
restore_registers();

On the surface, the ISR seems short and robust. The reason it is slow, is the printf statement. The printf statement is a large, complex, and slow function. Consequently, the single printf statement represents a large number of assembly language statements that takes many cycles to complete.
Question 5. The table below shows the periods and worst-case execution times for two periodic real-time tasks.
	Task
	Period
	Duration

	1
	60
	30

	2
	100
	35

(a) Determine the processor utilization.
(b) Using the result from (a), explain whether one can or cannot properly schedule these tasks.
Answer:
Part (a) The processor utilization is

(5 points each)
 U=30/60 + 35/100 = 0.85
Part (b) The processor utilization is less than 100% but this is a necessary but not sufficient condition for scheduling. Without knowledge of the task deadlines one cannot determine if one can schedule the tasks.
Question 6. (10 points) A preemptive task switcher on an embedded controller switches between task1 and task2 below. The routines access a shared variable N that has initial value N = 3.
shared int N = 3;
task1() {
N = N + 1;
print N;
}

task2() {
N = N + 1;
print N;
}
Depending on when context switches occur, one scenario is that task1 and then task2 increments N. Alternatively, task2 can increment first, followed by task1. These are labeled as A and B in the table below, along with the expected result, namely N = 5, since each task increments N.
The table also shows cases C and D, where despite the fact that the scheduler runs both tasks, N’s value is 4 rather than 5. Explain how this can happen. Note, this is a 10-point question, so you must provide sufficient amount of detail.
	
	Order
	Result

	A
	task1(), task2()
	5

	B
	task2(), task1()
	5

	C
	task1(), task2()
	4

	D
	task1(), task2()
	4

Answer: The key statement that is causing the undesired behavior is N = N + 1. Even though this is a single statement, the compiler generates several assembly language statement and the C statement is NOT atomic.
Question 7. (5 points) Please indicate the value of the following expression in hexadecimal:

 ((0x216>>3) - 3)
0x216= 0010 0001 0110

After shift 0000 0100 0010

Sub 3: 0000 0011 1111 = 0x3F
You can also convert by decimal: 0x216=534, shift 3 bits equal div 8. 534/8=66, 66-3=63=0x3f
Question 8. (5 points). What is the difference between the Harvard structure and the von Neumann structure? Explain why many DSPs use Harvard architecture.
Harvard architecture has physically separate pathways for instructions and data. Von Neumann architecture uses same physical pathways for instructions and data .

Harvard architecture machine has distinct code and data address spaces: instruction address zero is not the same as data address zero.Von Neumann architecture has same data address and instruction address .

n DSP's it makes sense to use separate code and data paths. That's because DSP's work mainly on "streaming data" meaning that the need for caching is rather small. Also the DSP codes can contain pre-computed coefficients that increase the code size. So there is a balance between data size and code size, meaning that it makes sense using a Harvard architecture.
Question 9. (10 points).Please read the following program carefully to write the contents of the assembler symbol table at the end of the code generation:
ORG 200

 P1: ADR r4,a

 LDR r0,[r4]

 ADR r4,e

 LDR r1,[r4]

 ADD r0,r0,r1

 CMP r0,r1

 BNE q1

 P2: ADR r4,e
If 200 is hexdecimal: P1=200 P2=21C

If 200 is decimal: P1=200 P2=228
Question 10. (15 points) Arnav Sharma, nine years old, was the Winner of Winners as well as the winner of the People’s Award with this asthma monitor, which runs on Raspberry Pi.
Arnav’s AsthmaPi uses a Raspberry Pi, a Sense HAT, an MQ-135 Gas Sensor, a Sharp Optical Dust Sensor and an Arduino Uno.The sensors on the SenseHAT are used to measure temperature and humidity, while the MQ gas sensor detects nitrogen compounds, carbon dioxide, cigarette smoke, smog, ammonia and alcohol, all known asthma triggers. The dust sensor measures the size of dust particles and their density. The AsthmaPi is programmed in Python and C++, and triggers email and SMS text message alerts to remind the owner take medication and to go for review visits.
Now, based on his ideas, use software engineering methods to give the design points of this system.
You should provide the top-level architecture design, and provide the most important class description by CRC cards, class diagram, sequence diagram and so on. (you should at least provide 4 classes)
Question 11. (10 points)

assemble language programming
Question 12 . (10 points)
assemble language programming
[image: image1.png]P2 Rasgberty i
Seose AT
Versian 1.0

Wi (e) Raspberry Pi 2015

