
LECTURE # 10

STATIC TESTING
chenbo@etao.net

6/21/20251

SOFTWARE SYSTEM QUALITY



Summary of Previous Lecture

6/21/20252

 Quality Assurance

 Qualification Scheme for Quality Assurance

Defect prevention

Defect Reduction

Defect Containment

 Software Fault Tolerance Techniques

Design Diversity technique

Data Diversity technique

 Failure Containment

Fault Tree Analysis



Today’s Lecture

6/21/20253

 Software Fault Tolerance Techniques

Design Diversity technique

Data Diversity technique

Failure Containment

Fault Tree Analysis



Topics to Cover

6/21/20254

 Introduction of static testing

 Objective of static testing

 Static Testing Methods

Inspections

Walkthroughs

Desk Checking

Peer Ratings



Introduction

6/21/20255

 In software development, static testing, also called dry run

testing, is a form of software testing where the authors manually

read their own documents/code to find any errors.

 It is generally not detailed testing, but primarily syntax

checking of the code/document and/or manually reviewing the

code or document to find logic errors also.

 The term “static” in this context means “not while running” or

“not while executing”



Objectives of Static Testing

6/21/20256

 Static testing is the least expensive form of testing and has the largest potential for

reducing defects in software under development.

 The primary objective of static testing is defect reduction in the software by

reducing defects in the documentation from which the software is developed.



Static Testing Approach

6/21/20257

 Consider using a two-step approach to static testing.

 For the first step, clean up the cosmetic appearance of the document: check spelling, 

check grammar, check punctuation, and check formatting.

 The benefit of doing the first step is that when the document is cosmetically clean, 

the readers can concentrate on the content.

 The liability of skipping the first step is that if the document is not cosmetically 

clean, the readers will surely stop reading the document for meaning and start 

proofreading the content.

 For the second step, use whatever techniques seem appropriate to focus expert review 

on document contents.



Static Testing Techniques

6/21/20258



Inspection

6/21/20259

 Fagan Inspection

 Gilb Inspection

 Two Person Inspection

 N-Fold Inspection

 Meetingless Inspection



Generic Inspection Process

6/21/202510

Generic process/steps:

1. Planning and preparation (individual)

2. Collection (group/meeting)

3. Repair (follow up)



Fagan Inspection

6/21/202511

 Fagan inspection refers to a structured process of trying to find defects in 
documents such as programming code, specifications, designs and others during 
various phases of the software development process.

 It is named after Michael Fagan who is credited with being the inventor of formal 
software inspections.

 Fagan Inspection is a group review method used to evaluate output of a given 
process.

 In the process of software inspection the defects which are found are categorized in 
two categories:

Major Defects

Minor defects



Fagan Inspection

6/21/202512

 The defects which are incorrect or even missing functionality

or specifications can be classified as major defects: the

software will not function correctly when these defects are

not being solved.

 In contrast to major defects, minor defects do not threaten

the correct functioning of the software, but are mostly small

errors like spelling mistakes in documents or optical issues

like incorrect positioning of controls in a program interface.



Fagan Inspection

6/21/202513

Typical operations
In a typical Fagan inspection the inspection process consists of the 
following operations:

 Planning
 Preparation of Materials

 Arrangements of Participants

 Arrangement of meeting place

 Overview
 Author-Inspector Meeting

 Assignment of Roles

 Preparation or Individual Inspection
 Independent Analysis/examination

 Code as well as other documents



Fagan Inspection

6/21/202514

 Individual results:
 Questions

 potential defects

 The participants prepare their roles

Inspection meeting
 Meeting to collect/consolidate individual inspection results

 Defect identification, but not solutions, to ensure inspection effectiveness

 Fagan inspection typically involves about 4 people in the inspection team

 No more than 2 hours

 Inspection report

Rework (performed by the author)
 Rework is the step in software inspection in which the defects found during the inspection 

meeting are resolved by the author, designer or programmer.



Fagan Inspection

6/21/202515

Follow-up
 In the follow-up phase, defects fixed in the rework phase should be verified.

 The moderator is usually responsible for verifying rework. Sometimes fixed work can be accepted

without being verified, such as when the defect was trivial. In non-trivial cases, a full re-inspection

is performed by the inspection team (not only the moderator).

 If verification fails, go back to the rework process.



Gilb Inspection

6/21/202516

1. Planning (same to Fagan inspection)

2. Kickoff (Overview)

3. Individual Checking (Preparation)

4. Logging Meeting (Inspection)

5. a) Edit (Rework) b) Process brainstorming

6. Edit Audit (Follow-up)

Process brainstorming is added right after the inspection meeting. The focus of
this step is root cause analysis aimed at preventive actions and process
improvement in the form of reduced defect injections for future development
activities

 The team size is typically about four to six people

Checklists are extensively used, particularly for step 3



Inspection Session

6/21/202517

 During the session, two activities occur:

1. The programmer narrates, statement by statement, the logic of the program. During

the address, other participants should raise questions, and they should be followed to

determine whether errors exist. It is likely that the programmer rather than the other

team members will find many of the errors found during this narration.

2. The program is analyzed with respect to a checklist of historically common 

programming errors. 

 The moderator is responsible for ensuring that the discussions proceed along

productive lines and that the participants focus their attention on finding errors,

not correcting them. (The programmer corrects errors after the inspection

session.)



Inspection Session

6/21/202518

 The ideal time for the inspection session appears to be from 90 to 120 minutes. Since

the session is a mentally taxing experience, longer sessions tend to be less productive.

 Most inspections proceed at a rate of approximately 150 program statements per 

hour.

 For that reason, large programs should be examined in multiple inspections, each

inspection dealing with one or several modules or subroutines.

 Note that for the inspection process to be effective, the appropriate attitude must be

established. If the programmer views the inspection as an attack on his or her character

and adopts a defensive posture, the process will be ineffective. Rather, the programmer

must approach the process with an ego less attitude so the session can be productive



Two Person Inspection

6/21/202519

 Some software artifacts are small enough to be inspected by one or two inspectors

 Similarly, such reduced size inspection teams can be used to inspect software
artifacts of limited size, scope or complexity

 The so called Two Person Inspection was proposed to simplify the Fagan inspection,
with an Author-Inspector pair

 This technique is cheaper and more suitable for smaller scale programs, small
increments of design and/or code in the incremental development, or other
software artifacts of similarly smaller size

 A typical implementation of two-person inspection is the reversible author-
inspector pair

 This technique is easier to manage because of the mutual benefit to both individuals



Meeting less Inspection 

6/21/202520

 Experimental evidences indicates that most of the discovered defects are indeed 

discovered by individual inspectors during the preparation step of Formal 

Inspections like Fagan and Gilb

 The defect detection ratio in the meeting session lies in the range of 5% to 30%

 Therefore there is a possibility of eliminating inspection meetings entirely, thus 

significantly reducing the overall inspection cost

 This results in a so called meetingless inspection, where individual inspectors do 

not communicate with each other 



Meeting less Inspection

6/21/202521

 One of the main drawback of this approach is the high False Alarm rate 

 Another drawback of this approach is duplication of errors

 Various ways of communication can be used to pass the individual inspection 

results to the author, e.g through direct communication with the author, or 

through some defect repository 



N-Fold Inspection

6/21/202522

 Tsai et al. [1], developed the N-fold inspection process, in which N teams each 
carry out independent inspections of the entire artifact. 

 N-Fold inspection uses formal inspections but replicates these inspection activities 
using N independent teams. 

 The same software artifact (e.g., a URD (User Requirements Document) is given 
to all N teams. 

 An appointed moderator supervises the efforts of all N teams. 

 N-fold inspections will find more defects than regular inspections as long as the 
teams don’t completely duplicate each other’s work. 

 However, they are far more expensive than a single team inspection. 



N-Fold Inspection

6/21/202523

 Each team performs formal inspection using a checklist and analyzes the software 

artifact. 

 Several teams may identify the same fault, but the moderator gathers all results of 

the independent inspection efforts and records each fault once in a database. 



Over the Shoulder Reviews

6/21/202524

 “over-the-shoulder” review is an informal code review technique

 An “over-the-shoulder” review is just that – a developer standing over the author’s

workstation while the author walks the reviewer through a set of code changes.

 Typically the author “drives” the review by sitting at the keyboard and mouse, opening

various files, pointing out the changes and explaining why it was done this way.

 The author can present the changes using various tools and even run back and forth

between changes and other files in the project.

 If the review sees something a miss, they can engage in a little “spot pair programming” as

the author writes the fix while the reviewer waits and watch the fix.

 Bigger changes where the reviewer doesn’t need to be involved are taken off-line.



Over the Shoulder Reviews

6/21/202525

 With modern desktop-sharing software a so-called “over-the shoulder” review can 

be made to work over long distances. 

 This complicates the process because you need to schedule these sharing meetings 

and communicate over the phone. 

 Standing over a shoulder allows people to point, write examples, or even go to a 

whiteboard for discussion; this is more difficult over the Internet. Many of the face 

to face interactions are lost in this case 



Over the Shoulder Reviews

6/21/202526

• The most obvious advantage 

of over-the-shoulder reviews 

is simplicity in execution. 

• This approach consumes less 

resources as compared to 

formal inspections like Fagan 

and Gilb

• This is not an enforceable

process

• Second, when a reviewer reports

defects and leaves the room,

rarely does the reviewer return

to verify that the defects were

fixed properly and that no new

defects were introduced.



E-mail pass-around reviews

6/21/202527

 This is the second-most common form of informal code review. 

 Here, whole files or changes are packaged up by the author and sent to reviewers 

via e-mail. 

 Reviewers examine the files, ask questions and discuss with the author and other 

developers, and suggest changes. 



E-mail pass-around reviews

6/21/202528

• An over-seas review might take many 

days as each ―back and forth‖ can 
take a day, so it might take five days to 

complete a review instead of thirty 

minutes. 

• It is difficult for Project managers to 

track whether all changes have been 

reviewed 

• Like the over-the-shoulder reviews E-

mail pass around reviews are easier to 

conduct. 

• One of the distinct advantages of e-

mail pass-arounds is that they can be 

done with remote developers. 

• Yet another advantage of e-mail pass-

arounds is they don’t knock reviewers 

out of ―the zone.‖



Desk Checking

6/21/202529

 Desk Checking is one of the older practice of human error-detection process. A

desk check can be viewed as a one-person inspection or walkthrough: A person

reads a program, checks it with respect to an error list, and/or walks test data

through it.

 In other words you can say Manually testing the logic of a program.



Desk Checking Process

6/21/202530

 Desk checking involves first running a spellchecker, grammar checker, syntax
checker, or whatever tools are available to clean up the cosmetic appearance of the
document.

 Then, the author reviews the document trying to look for inconsistencies,
incompleteness, and missing information.

 Problems detected in the contents should be corrected directly by the author with
the possible advice of the project manager and other experts on the project.

 Once all corrections are made, the cosmetic testing is rerun to catch and correct
all spelling, grammar, and punctuation errors introduced by the content
corrections.



Desk Checking Drawbacks

6/21/202531

 Desk checking is the least formal and least time-consuming static testing

technique.

 Of all the techniques, desk checking is the only one whereby the author test his or

her own document.

 For most people, desk checking is relatively unproductive.

One reason is that it is a completely undisciplined process.

A second, and more important, reason is that it runs counter to a testing principle

(“that people are generally ineffective in testing their own programs”). For this reason,

you could deduce that desk checking is best performed by a person other than the

author of the program.



Code Walkthrough

6/21/202532

 The code walkthrough, like the inspection, is a set of procedures and error-

detection techniques for group code reading.

 It shares much in common with the inspection process, but the procedures are

slightly different, and a different error-detection technique is employed.

 Like the inspection, the walkthrough is an uninterrupted meeting of one to two

hours in duration.

 The walkthrough team consists of three to five people.

 One of these people plays a role similar to that of the moderator in the inspection

process, another person plays the role of a secretary (a person who records all

errors found), and a third person plays the role of a tester.



Code Walkthrough

6/21/202533

 Suggestions as to who the three to five people should be vary. 

 Of course, the programmer is one of those people. Suggestions for the other 

participants include:

1. a highly experienced programmer 

2. a programming-language expert 

3. A new programmer (to give a fresh, unbiased outlook) 

4. the person who will eventually maintain the program 



Code Walkthrough

6/21/202534

 The initial procedure is identical to that of the inspection process: 

 The participants are given the materials several days in advance to allow them to 

bone up on the program. 

 However, the procedure in the meeting is different. Rather than simply reading the 

program or using error checklists, the participants “play computer”. 

 The person designated as the tester comes to the meeting armed with a small set of 

paper test cases—representative sets of inputs (and expected outputs) for the 

program or module. 



Code Walkthrough

6/21/202535

 During the meeting, each test case is mentally executed. That is, the test data are

walked through the logic of the program. The state of the program (i.e., the values

of the variables) is monitored on paper or whiteboard.

 Of course, the test cases must be simple in nature and few in number, because

people execute programs at a rate that is many orders of magnitude slower than a

machine.

 The walkthrough should have a follow-up process similar to that described for the

inspection process.



Peer Ratings

6/21/202536

 Peer rating is a technique of evaluating anonymous programs in terms of their overall
quality, maintainability, extensibility, usability, and clarity. The purpose of the technique is
to provide programmer self-evaluation.

 A programmer is selected to serve as an administrator of the process. The administrator,
in turn, selects approximately 6 to 20 participants(6 is the minimum to preserve
anonymity). The participants are expected to have similar backgrounds (you shouldn’t
group Java application programmers with assembly language system programmers, for
example).

 Each participant is asked to select two of his or her own programs to be reviewed. One
program should be representative of what the participant considers to be his or her finest
work; the other should be a program that the programmer considers to be poorer in
quality.

 Once the programs have been collected, they are randomly distributed to the participants.



Peer Ratings

6/21/202537

 Each participant is given four programs to review. Two of the programs are the

―finest‖ programs and two are" poorer‖ programs, but the reviewer is not
told which is which.

 Each participant spends 30 minutes with each program and then completes an

evaluation form after reviewing the program. After reviewing all four programs,

each participant rates the relative quality of the four programs. The evaluation form

asks the reviewer to answer, on a scale from 1 to 7 (1 meaning definitely “yes”, 7

meaning definitely “no”),

 The reviewer also is asked for general comments and suggested improvements.



Peer Ratings

6/21/202538

 After the review, the participants are given the anonymous evaluation forms for

their two contributed programs. The participants also are given a statistical

summary showing the overall and detailed ranking of their original programs

across the entire set of programs, as well as an analysis of how their ratings of other

programs compared with those ratings of other reviewers of the same program.

 The purpose of the process is to allow programmers to self-assess their

programming skills.



References

6/21/202539

1. Software Engineering by Roger S Pressman

2. http://en.wikipedia.org/wiki/Revision_control

3. http://project-management-knowledge.com/definitions/c/change-control-

boardccb/

4. http://en.wikipedia.org/wiki/Change_control_board

5. http://en.wikipedia.org/wiki/List_of_revision_control_software

6. http://en.wikipedia.org/wiki/Distributed_revision_control

http://en.wikipedia.org/wiki/Revision_control
http://project-management-knowledge.com/definitions/c/change-control-boardccb/
http://en.wikipedia.org/wiki/Change_control_board
http://en.wikipedia.org/wiki/List_of_revision_control_software
http://en.wikipedia.org/wiki/Distributed_revision_control

